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We study scattering in Ising field theory (IFT) using matrix product states and the time-dependent variational
principle. IFT is a one-parameter family of strongly coupled nonintegrable quantum field theories in 1 4 1
dimensions, interpolating between massive free fermion theory and Zamolodchikov’s integrable massive Eg
theory. Particles in IFT may scatter either elastically or inelastically. In the postcollision wave function, particle
tracks from all final-state channels occur in superposition; processes of interest can be isolated by projecting
the wave function onto definite particle sectors, or by evaluating energy density correlation functions. Using
numerical simulations we determine the time delay of elastic scattering and the probability of inelastic particle
production as a function of collision energy. We also study the mass and width of the lightest resonance near the
Eg point in detail. Close to both the free fermion and Ej theories, our results for both elastic and inelastic
scattering are in good agreement with expectations from form-factor perturbation theory. Using numerical
computations to go beyond the regime accessible by perturbation theory, we find that the high-energy behavior
of the two-to-two particle scattering probability in IFT is consistent with a conjecture of Zamolodchikov. Our
results demonstrate the efficacy of tensor-network methods for simulating the real-time dynamics of strongly

coupled quantum field theories in 1 4+ 1 dimensions.
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I. INTRODUCTION

Much of what we know about fundamental particle physics
has been inferred from collider experiments in which high-
energy collisions produce many outgoing particles. However,
our ability to analyze these processes from fundamental prin-
ciples is currently restricted due to the lack of theoretical
tools. Feynman diagram methods can be effective in the weak-
coupling regime of a quantum field theory, and in some special
cases scattering data can be extracted from Euclidean lattice
QCD computations [1,2], but real-time analysis of particle
production at strong coupling and high energy is largely be-
yond the reach of existing methods. For example, there is no
known technique for computing the high-energy behavior of
glueball-glueball scattering in pure Yang-Mills theory.

The situation is less dire for strongly coupled quantum
field theory in 1 4 1 spacetime dimensions. We can succinctly
represent the state of a quantum spin chain as a matrix product
state (MPS), and if the state does not become too highly en-
tangled, then we can efficiently simulate its evolution under a
local Hamiltonian. Furthermore, relatively simple spin chains
close to criticality can approximate a variety of nonintegrable
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continuum quantum field theories. First steps in this direction
have already been pursued in Refs. [3—7], however not in the
continuum limit needed to learn about quantum field theories.
By studying elastic and inelastic scattering processes in such
field theories using the MPS method for sufficiently large cor-
relation lengths and wave-packet sizes, we can hope to address
some longstanding open questions about these processes.

In this work, we demonstrate the feasibility of this strategy
by using MPS methods to study Ising field theory (IFT), a
parameterized family of massive continuum theories obtained
by deforming the critical two-dimensional Ising model. The
action of IFT is

I]]:T = IICFT -7 / d2x G(X) — h/dzx O'(.X), (1)

where Iicpr is the action of the Ising conformal field theory
(ICFT), € and o are the relevant energy and spin operators
with scaling dimensions A, =1 and A, = %, respectively,
and t and £ are the thermal and magnetic deformation param-
eters. The term in Eq. (1) that contains the energy operator € is
called the thermal deformation of ICFT because it arises from
perturbing the temperature in the Ising model away from the
critical temperature. The term that contains the spin operator
o is called the magnetic deformation of ICFT because it arises
from a Z,-symmetry-breaking external magnetic field in the
Ising model. Because t has scale dimension 1 (in units of
mass) and & has scale dimension 15/8, we characterize the
relative weight of the two perturbations using the dimension-

Published by the American Physical Society


https://orcid.org/0000-0003-2933-0102
https://orcid.org/0000-0002-1498-6654
https://orcid.org/0000-0002-5288-5520
https://ror.org/02vwzrd76
https://ror.org/04mv4n011
https://ror.org/00fbnyb24
https://ror.org/05dxps055
https://ror.org/013m0ej23
https://ror.org/0021fvv57
https://crossmark.crossref.org/dialog/?doi=10.1103/9dxz-k5wb&domain=pdf&date_stamp=2025-06-16
https://doi.org/10.1103/9dxz-k5wb
https://creativecommons.org/licenses/by/4.0/

RAGHAV G. JHA et al.

PHYSICAL REVIEW RESEARCH 7, 023266 (2025)

0 n3 T2 o0
T n
3 stable 2 stable
particles particle
FEg Theory Free Fermion

FIG. 1. IFT interpolates between the integrable Eg theory (n =
0) and massive free field theory (7 = 00). As 7 increases, the number
of stable particles changes from 3 to 2 at 73 ~ 0.022 and changes
from 2 to 1 at n, =~ 0.333 [8].

less ratio

T
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where T « T — T.. Our conventions are the same as in
Ref. [8].

For n = oo (purely thermal deformation, 4 = 0), IFT is the
theory of a massive free fermion for which scattering is trivial.
For n = 0 (purely magnetic deformation, t = 0), Zamolod-
chikov [9,10] found that IFT is an integrable theory with
eight stable particles called the Eg theory.! The five heaviest
particles lie above the two-particle threshold and are stable
only due to integrability. The peculiar excitation spectrum of
IFT close to the Eg limit has been observed experimentally in
quasi-one-dimensional Ising ferromagnets probed by neutron
scattering [11].

For intermediate values of n, IFT is nonintegrable and
strongly coupled. The number of stable particles in IFT is
three for small 1 (close to Eg theory), one for large n (close
to the free fermion theory), and two for intermediate values
of 1, as indicated in Fig. 1. IFT has been widely explored in
previous works [12-17].

IFT arises in the scaling limit of a simple spin-chain model
with Hamiltonian

H=— (defﬂ + 807 + gzaj), 3)
i—0

J

where g, = T/T, and g, is the Z,-symmetry-breaking mag-
netic field. H generates time translations in lattice time f1,.
The low-lying excitations are described by IFT as the cou-
plings approach the critical point, g — 1 and g, — 0; the
resulting continuum theory may be parametrized by

gx_l
Matt = W’ 4

which is to be held fixed as the critical point is approached.
The relationship between the continuum 7 defined in Eq. (2)
and 7y, is not obvious but can be determined in princi-
ple by comparing continuum and lattice computations. See
Appendix A for further details. Lattice energies, momenta,

I'This integrable limit is commonly referred to as the Eg limit since
the masses of the eight stable particles found by Zamolodchikov
match the components of the Perron-Frobenius vector (the eigen-
vector corresponding to the largest eigenvalue) of the Cartan matrix
of the Eg Lie algebra; the structure of the S-matrices reflects this
underlying symmetry.

times and positions need to be converted to their dimen-
sionful “physical” continuum counterparts as explained in
Appendix B.

An object of fundamental interest in any gapped quantum
field theory is the S-matrix, which encodes the particle spec-
trum and couplings. Therefore, following the previous work
of some of the authors [18], we use MPS methods to study the
scattering of wave packets in this spin chain.

We can describe a scattering experiment involving two
particles of “type 1”7 (the lightest particle in the theory) at
center-of-mass energy E as

o0 n
dq;
1P1, P2)in = Sti=11(E;0) P15 P2)owe + Z <l_[ 471_E>

n=2 \i=I1
2n)’
X _8(2)(})1n - out)
Sn
X Sll—)Xn(plv PZ’ 611’ ceey ‘]n? 77) |q1’ cey qn)ou[ k)
(&)

where the subscripts of the states denote that they are de-
fined in the asymptotic in- and out-regions where particles do
not interact. The first term on the right-hand side describes
elastic scattering; in two dimensions, energy-momentum con-
servation requires that for elastic two-particle scattering the
incoming and outgoing momenta agree. The remaining terms
describe inelastic scattering into states with two or more
particles. s, is a symmetry factor that accounts for the indistin-
guishability of outgoing particles. The delta-function imposes
energy-momentum conservation. We will refer to S7;_,_ as S-
matrix elements.> They are analytic functions of the involved
momenta. We have also explicitly indicated a dependence on
the couplings through 7.

Using our MPS simulation methods we are not able to
obtain the full S-matrix. We can, however, obtain two ob-
servables that are sensitive to the magnitude and phase of
the S-matrix: scattering probabilities and time delays. For
incoming wave packets that are well-localized in momentum
space with a center-of-mass energy around E, the probability
for an elastic collision is given by integrating the absolute
value squared of the S-matrix element S;;_,1;(E, n) against
the incoming wave packets,

Pion(E,n) = /dE’,o(E’;E)|S”_>”(E/, I

~ St (E, ). ©6)

The last equality holds if the S-matrix element is approxi-
mately constant on scales set by the variance of the incoming
energy probability density p(E’; E). To compute the probabil-
ity P11 x (E, n) of an inelastic process with final state X, the
square of the S-matrix element in Eq. (6) needs to be replaced
by the total cross-section o (E);;_.x which can be computed
from the S-matrix element Sy1_x(p1, P2, 1, ..., qn; 1) US-
ing standard textbook methods. Following the same logic as

’In higher dimensions the quantities S;;_x are often called matrix
elements.
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FIG. 2. Scattering processes can be visualized by computing energy expectation values at every time step. There are three characteristic
scattering processes: (a) elastic scattering at low energies, (b) scattering near a resonance, and (c) inelastic scattering above threshold. Those
processes allow us to extract the momentum dependence of the S-matrix via time delays, the masses and widths of resonances, and inelastic

scattering probabilities, respectively.

above, for a slowly varying inelastic cross-section one can
show that

Pix(E,n)~o(E,N)ii-x- @)

Through our simulations we also have access to the time
delay,

At = —idg log S11.11(E, 1), ®)

which roughly captures how trajectories are displaced when
particles scatter elastically and was first studied by Wigner
[19]; see Appendix C for details. By extracting the time delay
from the scattering process, we can reconstruct the derivative
of the phase of Sy;_, 11 with respect to the incoming momenta.
In Sec. II we describe in detail how both these quantities can
be extracted from our simulations. Depending on the scatter-
ing energy, a variety of effects are visible and our numerical
results can then be compared to theoretical predictions.

MPS methods can access features of the S-matrix of
strongly coupled (1+1)-dimensional quantum field theories
which are beyond the reach of other computational methods.
In addition, aside from capturing properties of asymptotic
scattering states encoded in the S-matrix, these methods pro-
vide an engaging visualization of scattering processes, with
high resolution in both space and time, such as Fig. 2. By
unveiling aspects of real-time evolution that are not easily
extracted from more traditional quantum field theory calcula-
tions or from typical scattering experiments, tensor-network
simulations can strengthen our intuition about field-theory
dynamics and stimulate us to raise and probe new questions
concerning strong-coupling phenomena. However, the correct
interpretation of the images produced in the simulations is not
always straight-forward and in Sec. III we explain the correct
reading of our figures.

Whenever we have theoretical predictions to compare to,
our simulations achieve a good approximation to scattering in
IFT if the correlation length is large compared to the lattice
spacing and our wave packets are broad compared to the cor-
relation length (see Fig. 3). In practice, the correlation length
for all our simulations is in the range of 4—10 lattice sites,
the wave packets typically extend over 70—120 sites, and the
simulated window spans 1000-2000 sites.

Consider the image in Fig. 2(a), which depicts a simu-
lated scattering event at low energies, in the kinematic regime
where only elastic scattering is allowed. In this regime, S} 1]
is merely an energy-dependent phase. We can extract the
energy dependence of the time delay in our simulations.
In particular, when IFT is close to an integrable theory we
find that it agrees with form-factor perturbation theory; see
Secs. IV and V.

As noted, the integrable Eg theory contains stable particles
with masses above the two-particle threshold; the masses of
three of these particles are shown in Table I. In the regime
of IFT where n is nonzero and small, these particles become
narrow resonances which leave an imprint on the time delay.
When the total energy is close to the resonant energy, real-time
evolution produces a lump of energy in the scattering region
that dissipates slowly and produces a set of secondary tracks
as shown in Fig. 2(b). As discussed in Sec. VI the lifetime
of the resonance can be inferred from the rate of decay of
this lump. We used a variant of this method to determine the
mass my and the width I'y of the lightest resonance of IFT
as a function of n. We find good agreement with perturbative

corr. length £

T T T T O O B

|(n, Bj)) =

wavepacket width o > ¢

_(n—ng) )
e P x 1 O—FHI{F xeiron

[no, Bj (ko)) =

FIG. 3. Pictorial representation of MPS states. MPS tensors are
represented by blue squares (vacuum A tensor) or red circles (exci-
tation B tensor). The horizontal lines represent the contraction of the
bond dimension indices. The vertical black lines correspond to spin
degrees of freedom. Upper figure: A single excitation tensor affects
expectation values about a correlation length away from its insertion
locus. Lower figure: Our scattering states are wave packets built from
superpositions of localized basis states with o > £.
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TABLE 1. Mass spectrum at Eg and multiparticle thresholds in
units where m; = 1.

my my 2my my my+my, ms m+m3 3m mg  2mp

1.618 1.989 2 2405 2.618 2956 2989 3 3.218 3.236

calculations to leading order in n when 7 is small, and also
obtain results for values of n well beyond the domain of
validity of those perturbative estimates, in good agreement
with existing results [16].

At sufficiently high energy, particle production can occur.
Consider for example a collision of two particles of type 1 at
n roughly midway between the two integrable endpoints with
center-of-mass energy greater than m; + my, the sum of the
masses of the stable particles of types 1 and 2. Figure 1(c)
depicts the postcollision energy density as a function of space
and time. The tracks shown provide clear evidence of particle
production. From our simulations, we can extract the scatter-
ing probabilities and near the integrable points compare them
to predictions from form-factor perturbation theory. We do so
in Secs. IV and V and again find good agreement.

However, due to the strongly coupled nature of IFT, for a
large swath of the 1 parameter space no theoretical predictions
are available for comparison. Thus using MPS methods to
address questions about IFT in this regime is particularly
informative. For energies above the threshold for inelastic par-
ticle production P_.11(E, ) can be less than one. A natural
question concerns the value of

P¥() = lim Pii(E, ). ©)

Is this quantity zero (inelastic scattering dominates at high
energy), one (elastic scattering dominates), or some other
value? Since the free fermion theory and the Eg theory are
both integrable, we know that P*°(oc0) = P*°(0) = 1, but the
answer for intermediate values of 7 is not obvious. We have
aimed to address this question by computing P 11(E, 1)
for values of E up to several times the inelastic scattering
threshold in Sec. VII. Our results are consistent with a pro-
posal by Zamolodchikov [20] which implies that P*°(n) = 0
for n < n. and P*®(n) = 1 for n > n., where 5, is a critical
value of 7.

II. METHODS

A. Matrix product states

This paper concerns the scattering of low-lying excitations
of gapped, one-dimensional spin chains in the thermodynamic
limit. At every site i, the chain hosts a spin s; which lives in
a d-dimensional Hilbert space H; = C¢. Since gapped sys-
tems have finite correlation length, these excitations can be
efficiently captured by MPS [21-23], which take the form

|[¥) = Z (ﬁz . -A(,SII)A(()SO)A?OASZ) L ﬁR) Is), (10)
{s}

where

Is) = |...5_15085182...) (11)

denotes a computational basis state of the spin chain. Here,
AU are complex D,_; x D, matrices. The parameters D,
are called bond dimensions and equal the maximal number
of nonzero eigenvalues of the reduced density matrix of a
bipartition between sites n and n — 1. Thus, log D, gives an
upper bound on the von Neumann entropy between spins s;
with I < n and spins s, with r > n. While this limits the class
of states that can be represented as an MPS, in practice we
can choose all D, large enough such that for our scattering
“experiments” the resulting states are well-approximated by
the ansatz (10). The D, ,-dimensional vectors v; and v live
at spatial infinity. In the generic case, due to exponentially
decaying correlations, their values do not affect expectation
values or dynamics and are thus immaterial. As is not hard
to see from (10), a given state has many different MPS repre-
sentations related by A®) > g, A" ¢! This arbitrariness
is fixed by imposing gauge conditions on A, [24,25], leaving
D*(d — 1) degrees of freedom. Moreover, these gauge trans-
formations can be used to bring the A,, into form which makes
numerical evaluation of operator expectation values in MPS
particularly efficient. For a pedagogical introduction see for
example [26].

B. Construction of initial states

To study scattering we follow a strategy inspired by real-
life experiments. We prepare an initial state of a pair of
well-separated and localized particles with opposite momenta
on top of the MPS approximation of the ground state. Those
excitations approach each other and scatter in a finite region.
We let excitations emanating from the scattering region propa-
gate freely until they are sufficiently well separated and study
the properties of the resulting outgoing state, such as parti-
cle content and time delays. Due to the mass gap the initial
and final states are well approximated by a superposition of
products of one-particle states. Therefore, representations of
single-particle states suffice for constructing incoming states
and analyzing outgoing states, including correlations among
outgoing particles.

1. Ground State

To find the ground-state approximation [€2) of the spin
chain we consider a translationally symmetric ansatz of the
general form given in Eq. (10) where all tensors are chosen
to be identical, i.e., A" = A®) with bond dimension Dy,.
In practice, we choose D, such that the smallest Schmidt
coefficients are about 1078; D,,. = 24 typically suffices. We
then minimize the energy in this state with respect to A.> The
resulting state is close to the ground state. For the numerical
computations in this paper we use the evoMPS software [27]
which implements the conjugate-gradient method [28] for
optimizing A.

2. One-particle Excited States

To construct one-particle states, we start from the vacuum
state and replace the vacuum tensor A at a single site n by an

3From here on, we will suppress the upper index of A“» and simply
write this site-independent tensor as A.
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independent excitation tensor B, following Ref. [29] as shown
in Fig. 3. Such an ansatz represents a quasilocal excitation
around 7. Its effect on correlation functions is not confined to
the site n but dies off exponentially away from that site with a
rate set by the correlation length £.

We are interested in identifying (D2, x d)-dimensional
tensors B that yield excitations corresponding to the stable
particles of the theory. To achieve this we construct a state
of fixed momentum « € (—m, w] by performing a Fourier
transformation with respect to the location of B,

|(k, j)) = Z Z ei/cnﬁZ( B .A(‘Y"’I)B§S")A(‘Y"+‘) o )D.R Is)

neZ sn

=: Y " |(n.B)), (12)

neZ

where the last step defines |(n, B;)) as the state obtained from
the vacuum state by replacing the vacuum tensor at site n
by B;. The additional index j enumerates different particle
species with mass below the two-particle threshold. Note that
states of the form Eq. (12) do not generally live in the MPS
manifold defined by Eq. (10) but in its tangent space at the
vacuum [30]. Analogous to the gauge freedom in Eq. (10), B
has the gauge freedom

B;su) — B;Xn) +A(sn)X _ e—iKXA(Sn)’ (13)

where X is an arbitrary Dy,. X Dy, matrix whose value does
not affect the momentum eigenstates. The gauge freedom can
be fixed such that ((n, B;)|(m, By)) = 8 jx0um, With |(n, B;))
forming an orthonormal “position basis” for excitations of
species j.

To construct B:"’ we can now demand that the momentum
eigenstates (12) are orthogonal and delta-function normalized,
while at the same time requiring that the effective Hamilto-
nian {(«’, j)|H — Hyac |(k, J)) HK’,{ for states of the form
Eq. (12) is diagonal, thus obtaining a basis of approximate
eigenstates of the Hamiltonian; here H,,. denotes the vacuum
energy. The diagonal entries of H,f{(, then give the energy
E (k) of excitation j at momentum « [29]. The correspond-
ing tensors B;(«) generally depend not only on the particle
species j, but also on the momentum «.

(s)

3. Two-particle Scattering States

To obtain particles that are well localized before and after
scattering, we can construct superpositions of energy eigen-
states to obtain finite-width wave packets centered at site ng
and with central momentum ko,”

. g
no, ko, j) = e 2 € |(n, Bj());  (14)
nez

see Fig. 3.

“Here the parameter o characterizing the width of the wave packet
is defined following the conventions of the evoMPS code [27].
The probability distribution governing the particle’s momentum is
a Gaussian with variance o 2. In position space the wave packet has
variance o2 /4.

Note that here we have fixed the argument of the excita-
tion tensor to be k. However, since we use this excitation
tensor to construct a localized excitation, the resulting state
is necessarily a superposition of momentum eigenstates with
a finite spread around the central value k. Furthermore,
the localized wave packets are not invariant under Eq. (13).
Fortunately, the momentum dependence of the excitation ten-
sors can be safely neglected if the wave packets are suitably
broad in position space (compared to the correlation length
£) and correspondingly narrow in momentum space. Spa-
tially broad wave packets are desirable in any case, both
to reduce lattice artifacts and to characterize the momentum
dependence of the S-matrix. Our wave packets have a width
of o &~ 70-120 lattice sites and are constructed over around
400-800 sites, wide enough for Eq. (14) to be an adequate
approximation given that in our simulations £ is 4-10 lattice
sites.

Importantly, we can also approximate multiparticle states
by inserting copies of the excitation tensor at several sites and
convoluting them with a Gaussian. For example, if we want
to scatter two incoming particles of mass m; with opposite
momenta =k, then the in-state is constructed as

Cmmg? @—mp)?

lin) =Y e e

n<n’

x &7 | (n, Bi(ko)), (0, Bi(=k0))) . (15)

Here, |(n, B;j), (1, B})) is defined analogously to |(n, B;))
as the state obtained from the vacuum state after replacing
tensors at locations n and n’ by tensors B;S”) and Bif”'), respec-
tively. This will be a good approximation to a two-particle
state as long as the wave packets are sufficiently wide and suf-
ficiently far separated. In practice, the states are constructed in
a window of size N and the wave packets are truncated when
n > N/2 (' < N/2). At this point, the Gaussian coefficients
are less than 10~ and the error is negligible. This construction
allows us to represent a state of the form (15) as an MPS with
bond dimension 2Dy, [18].

C. Time evolution

To keep track of the evolution we define a window on
the spin chain encompassing N spins. For our simulations,
N is between 1000 and 2000. Within this window, we use
the nonuniform ansatz (10) and make the tensor coefficients
time-dependent. Outside this window, the tensors are fixed to
be vacuum tensors A. The tensors within the window change
to approximate the evolved state, with their bond dimensions
increasing up to a maximum allowed value Dy,.x; a typical
choice for our simulations is Dy,,x = 64, which we find to be
sufficient for convergence (see, e.g., the data of Appendix F 1).
Such a small value might seem surprising but, as previous
work has shown [18], when good approximations to quasi-
particle states are evolved, the entanglement entropy changes
very little outside of actual scattering events, which them-
selves need not generate a great deal of entanglement at the
relatively low energies we consider.
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We require equations of motion A(z) for the MPS tensors
so that

id, W (AQ@))) = iA@)" |9y (A1)
~ H |y (A1),

where I is a multi-index that runs over the entries of the
tensors that are allowed to change, and where we have ab-
breviated 55 = 9.

To solve this problem, we evolve the scattering states in
time using the time-dependent variational principle algorithm
for MPS developed in Refs. [31-33] and implemented in
Ref. [27]. This approximates the time evolution by projecting

H |y) onto the tangent space spanned by |9;v),
@v1ay) A@) = —i (0 |H ) . a7

Inverting the Gram matrix (9;v|0;¢) then allows us to solve
for A(¢)!, and use the finite element method to determine the
change in A(z)’. In practice, the gauge freedom for our ansatz
can be fixed in such a way that the Gram matrix becomes the
identity matrix.

At time r = 0 we start with a two-particle in-state of the
form Eq. (15). Initially, a split-step integrator [33] is used
which increases the bond dimension from 2Dy, to some D«
During the subsequent time evolution at fixed bond dimen-
sion, we use the Runge-Kutta (RK) 4/5 integrator [32]. The
step-size is denoted by d#, such that after N, time steps the
lattice time fi54 1S given by f1a¢ = N; dtjae and can be converted
to physical time using the method of Appendix B. In our
simulations dt;,; = 0.05 or smaller.

(16)

D. Phases and probabilities

In an ideal scattering scenario, the relation between the
state at late and early times is described by the S-matrix

|out) = S |in)
(18)

elH()tfele(tfft,')elH()t,'

= lim lin) ,

tp)i—£00

where H = Hy + Hjy is the full Hamiltonian of the system, Hy
is the free Hamiltonian that propagates well-separated stable
particles and Hj, captures interactions. Below the inelas-
tic threshold the S-matrix is simply a momentum-dependent
phase, €. Our methods do not preserve global phases during
time evolution and thus we cannot extract the phase shift.
Nonetheless, we can extract the derivative of the phase shift
with respect to the center of mass energy of the scattered
particles, also known as the time delay. Above the threshold,
we can determine probabilities for the scattering of a pair of
the lightest particles to produce other stable excitations.

1. Time delay

A nontrivial momentum dependence of the S-matrix intro-
duces a relative shift in the in- and out-going trajectories of
particles which could in principle be extracted from particle
tracks such as Fig. 2(a). This strategy has been implemented
in the context of time evolution of MPS in Ref. [34]. However,
this approach is not feasible for the present work, partially due
to the difficulty of even defining trajectories for very broad
wave packets.

We instead follow a different strategy and extract the time
delay by projecting the scattering state at different times onto
reference states of various momenta. The reference states we
choose take a planewave-form,

e y=" Y

|n—n'|Z Anmin

) 1, By (k)), (', B1(k))) .

19)

The sum runs over all insertions of the excitation tensors
which are farther apart than some gap Anpi,. This gap
ensures that there is no contribution coming from interactions
amongst the excitation tensors. For the analyses of this paper
we chose Anp;, = 100. The fact that for fixed n, the sum over
n’ is cut off at some finite distance generally introduces high
momentum contributions into the reference state. However,
since we are only considering overlaps with low-energy
states with localized excitations, those do not contribute to
overlaps. In practice, we compute an overlap matrix O, , by
taking simulated states and projecting onto localized states
with two excitation tensors |(n, Bi(x)), (n', Bi(k'))). As
for the one-particle case, the gauge freedom of Eq. (13)
can be fixed for each excitation tensor so that these
states form an orthonormal two-particle “position basis”:
((n, Bi (1)), (', By (k") (m, B1(k)), (m', Bi(k"))) = SumBumr
for n < n', m < m'. We then Fourier transform the overlap
matrix to obtain the overlaps of the outgoing state with states
of the form Eq. (19).

To extract the time delay from overlaps at momentum
we consider nearby momenta k1 = ko &+ dk and compute

(ky, =k [P (D)) (K-, —KIW(0)>>
(20)

o) = arg <<x+, ke [ 0)) (ks —k_ |9 (1)
= 2E,, — Eo )t + Alks) — Ak_),

where t is chosen large enough such that the particles are well
separated after scattering. The quantity ¢(¢) is independent of
the global phase and captures the relative phase-shift between
components of |) with momenta «4. The first contribution
to ¢(t), which consists of the expected phase shift for a free
theory which is known from the one particle spectrum E,, , has
to be subtracted. The time-independent contribution, A (k) —
A(k_), is the phase-shift due to interactions. Assuming it to
be slowly varying on scales §x, we can expand A (x4 ) to first
order around k),

Alky) — Alx-)

2B —E) - eAE)=—idglogSE). (2D

where we introduced the center-of-mass energy E = 2E, in
the last step. This result is then converted from lattice to
physical units as explained in Appendix B. In this paper, we
compare the time delay obtained this way with theoretical
predictions from form-factor perturbation theory. The depen-
dence of our results on the choice of the gap size Any;, and
3k is discussed in Appendix D.

Narrow resonances, corresponding to S-matrix poles in the
complex energy plane close to the real axis, can produce a siz-
able enhancement of the time delay. In Sec. VI we describe a
method for estimating the mass and width of such a resonance
by performing temporal and spatial fits to our simulated wave
functions.
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2. Probabilities

At energies above the inelastic threshold we consider the
probability of scattering into a two-particle sector. Similarly
to the phases, these scattering probabilities are obtained by
projecting the postcollision state onto a basis of localized
states, |(n, Bi(ko)), (n’, Bj(—ky))) with excitation tensors ob-
tained from single particle-localized states with momentum
k(. By Fourier transforming n (n') with respect to the lattice
momentum « (x’) one obtains a good approximation to the
overlap with a two-particle state with momenta « and «’.

To improve this approximation, we take into account the
so-far neglected «-dependence of B(k). This is done by se-
lecting a larger reference set of excitation tensors B;(k,),
where the momenta «, are chosen close to +k,. We use
these to generate an orthonormal basis B(k,) onto which a
general B(«) can then be projected: B(k) ~ ) c.B(k,). This
allows us to use the projection of the state onto the small
reference basis to approximate the overlap of the state onto
|(n, Bi(k)), (n', B;(k"))) for general «, «’.

Squaring the Fourier transformed overlaps yields a “proba-
bility matrix” P ;.. j(t). The quotation marks indicate that our
implementation of the Fourier transformation does not keep
track of the normalization of the probability matrix. Moreover,
as in the procedure for extracting time delays, the sums over
lattice sites in the Fourier transformations are subject to a
cutoff on the distance between excitation tensors. Therefore,
to obtain a proper probability, we have to normalize the “prob-
ability matrix” by the “probability” of being in the 11 sector
before scattering. The true scattering probability for an initial
state with two particles of type 1 into two particles of type i
and j is then obtained from

ZK,K' PK,i;K/,j(t)
Z/(,K’ PK,I;K’,I(O) '

i.e., by computing the total probability of finding particles of
type i, j in the out-state of the simulated scattering process. As
before, t must be chosen such that the particles have separated
sufficiently after the scattering.

P(11 — ij) = (22)

III. WAVE FUNCTIONS AND MULTIVERSES

Several of the figures shown in this paper, such as Fig. 2,
are obtained by computing the energy density expectation
value at different spatial positions and time steps. The
interpretation of these images is subtle. They capture su-
perpositions of possible scattering outcomes rather than one
particular outcome; hence there are combinations of outgoing
tracks appearing in the image that do not correspond to any
valid inelastic scattering channel [35].

Take for example Fig. 2(c) which shows particle produc-
tion. Although the figure shows four outgoing tracks, the state
is a superposition of three different outgoing particle config-
urations with two particles each: The outer two tracks mostly
correspond to scattering of 11 — 11, i.e., elastic scattering of
two particles, each with mass m;. The outer track on the left
together with the inner track on the right display scattering
of 11 — 12, i.e., two particles of mass m; scattering into one
particle with mass m; moving to the left and one particle with
mass m, > m; moving to the right. Likewise, the inner track
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0 1000 2000 0 1000 2000
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2.0 1x10
o 600 =~
£ = ]
+ —_
o 400 =10 X z
9O <
= =
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FIG. 4. Inelastic particle scattering is visible as the presence of
many tracks in the postcollision region (log-scale plot of excess
energy on the left). Not every combination of tracks is a possible
scattering outcome. Instead, the energy density is strongly correlated
between subregions of the postcollision region (right). A comparison
with the rescaled energy expectation values, shown as solid blue
backgrounds, indicates that only subsets of the outgoing tracks are
correlated. The simulation are run with D = 64 width a dynamical
window of 2000 sites. Above: n, = 0.700 (g, = 1.06, g, = 0.01),
E =3.9. Below: 1,0 = 1.97 (g, = 1.4, g, = 0.05), E = 3.15.

on the left together with the outer track on the right display
scattering of 11 — 21. Although not obvious from the image,
the two inner tracks, or any combination of more than two
tracks, never appear as a scattering outcome.

To confirm this interpretation of Fig. 2(c), we can project
the outgoing state onto the 11, 12, and 21 sectors as explained
above and check that the probabilities to scatter into the re-
spective sectors add up to 1. While this is fairly easy to achieve
using numerical methods for our spin chain model, we expect
that in the future real-time simulations will run efficiently
on quantum computers. Some work along this direction has
already started [36]. Indeed, with quantum computers, we
can investigate the regime where the postcollision state is
so highly entangled that classical MPS simulations fail [18].
Since projecting the postcollision state onto various asymp-
totic outgoing particle states might be rather inefficient in a
quantum computation, it is useful to consider other methods
for extracting information about possible scattering outcomes
from the postcollision quantum state.

One feasible task for quantum computers is estimating
correlators of local operators; for example, we may consider
correlation functions for the difference between the local en-
ergy density in the postcollision state and the energy density
of the vacuum. For a k-point correlator, we can fix k—1 of the
operator insertions at the locations of well-separated outgoing
particles, and scan over the location of the remaining operator
insertion to find the position of the last particle. An example is
shown in the upper row of Fig. 4. Here the two-point energy-
density correlator is plotted as a function of y, where x is fixed
at a local maximum of the energy density corresponding to the
position of a particle with mass m, moving slowly to the left.
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FIG. 5. If we detect the position of one of the three particles (one
of the red circles), then for a specified total energy we automatically
know where the other two particles are. The relative probability of
encountering particles in these various configurations—which can be
parameterized by the velocity of the middle particle—is plotted on
the top. For this figure the total incoming energy is 3.33m;.

As can be seen from the figure, the correlator is small for y
near the trajectory of a particle of mass m, moving slowly to
the right. As already expected from energy conservation, this
indicates that 11 — 22 is not a possible final state of the simu-
lated scattering process. Instead, the correlator as a function of
y is peaked where y is the position of a particle with mass m;
moving more rapidly to the right. Notably, however, the peak
of the correlator is to the left of the peak of the right-most
trajectory. This is because the right-most trajectory consists
of contributions from the processes 11 — 11 and 11 — 12.
The momentum of the right-moving m, particle in the former
is larger than in the latter, because in the latter process, part of
the energy has been converted into the rest mass for m,.

Even more interesting is the scattering process 11 — 111,
depicted in the lower row of Fig. 4. Close to the three-particle
threshold one can identify three tracks, each for an outgoing
particle with mass m;. However, while for two-particle final
states the kinematics uniquely determine the outgoing mo-
menta, for three particles there is a one-parameter family of
kinematically admissible outgoing momentum configurations.
As aresult, the central track appears smeared. Energy-density
correlation functions attest that the position of the central
wave packet is more sharply defined when we condition on
information about the positions of the other two outgoing
wave packets. Figure 4 shows the three-point energy-density
correlator as a function of y, where x and z are at fixed
positions displaced slightly to the right of the local maxima
of the energy density associated with the outer tracks moving
left and right. As the kinematics requires, this function is
maximized when y is displaced slightly to the left of the local
maximum of the energy density associated with the central
outgoing track.

Our numerical results for the energy-density distribution of
the outgoing state, indicated by the blue shading in Fig. 4, can
be compared with the kinematic constraints on the velocities
of the three particles portrayed in Fig. 5. The lower panel
of Fig. 5 shows how, for a state of three particles of type 1

with zero total momentum and specified total energy, fixing
the velocity of the middle particles determines the velocities
of the other two. Taking into account phase space factors and
the momentum dependence of the scattering amplitude, we
can obtain the probability distribution for the velocity of the
central particle as shown in the upper panel; see Appendix
E 1 for further discussion. The probability density vanishes
at both ends of the kinematically allowed velocity range; at
these points the velocity of the middle particle coincides with
the velocity of one of the outer particles, which is disallowed
because the particles are fermions. The simulated distribution
in the lower panel of Fig. 4 is somewhat smeared compared
to the theoretical prediction in the upper panel of Fig. 5
because we scatter wave packets rather than particles with
precisely defined momenta. The occurrence of parallel tracks
in Fig. 2(b) is discussed in Sec. VI and Appendix G 2.

IV. NEAR FREE FERMION THEORY

We can now demonstrate our techniques by comparing
our simulations to theoretical predictions for IFT from per-
turbation theory. Zamolodchikov and Ziyatdinov [37] studied
scattering in IFT close to the free fermion limit. At the free
fermion point (n = oo) the S-matrix for the 11 — 11 process,
i.e., for the process of scattering two fermions to two fermions,
is

S0 =—1; (23)

scattering is trivial, but the phase shift —1 is induced by
Fermi-Dirac statistics. The argument 6 is the relativistic ra-
pidity, related to the total scattering energy through E =
2 cosh(6/2), where we have set the fermion mass to 1.

It is useful to introduce

£=p 158 = |l

158 24)

to parametrize deformations away from the free fermion the-
ory at £ = 0. The spin chain description of the free fermion
theory, Eq. (3) with g, =0, has a Z, global symmetry in
which o* is applied to every site. As a result, physical quanti-
ties close to free fermion theory may be expanded in powers
of £2 around £ = 0. As we deform slightly away from the free
fermion point at £ = 0 toward larger &, two interesting things
happen.

First, we break the Z, symmetry by turning on the
magnetic field which introduces cubic coupling and corre-
spondingly a self-coupling pole in the S-matrix at £ = 1.
By crossing symmetry this new pole is accompanied by a
t-channel exchange at E = +/3. The pole must come together
with a nearby zero such that the limit £ — O reproduces
Eq. (23). This leads to a natural guess for an approximate
form of the S-matrix near the free fermion point (nFF) at
energies well below the inelastic threshold at E = 3, which
can be written using two Castillejo-Dalitz-Dyson (CDD) [38]
factors,

sinh @ + i sin %

X ,
sinh@ —isin % sinh6 +isin(5 — &)
(25)
where ¢ is a small, positive parameter related to the strength
of the magnetic deformation. Eq. (25) can be expanded at the

sinh§ —isin(5 — &)

ST (0) =~ —
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FIG. 6. (a) Simulated production probability at three different values of the lattice coupling parameter &,4. The solid lines are single
parameter fits of the theoretical production probability at first order in FF perturbation theory, Egs. (25) and (28). (b) Simulated time delay at
the same values of &,,. The theoretical predictions from FF perturbation theory are completely fixed by the probability fits. The shaded regions

show the expected magnitude of the second-order correction.

pole at E = 1 and takes the form
i€ n
0 —2mi/3

to leading order in ¢. For ¢ > O this is the right behavior such
that the massive fermion appears as a bound state in the s-
channel. This shows that ¢ is approximately the square of the
cubic coupling at the self-coupling point. Using the results of
[37] we find that & o &2 at leading order, as expected.

Second, as & is tuned away from zero, inelastic channels
open up such that particles can be produced in scattering
events. The probability of particle production can be pertur-
batively estimated from form factors of the o operator in the
massive free fermion theory. More precisely, Zamolodchikov
and Ziyatdinov analytically computed the effect on particle
production of the 2 — 3 processes arising from five-point
form factors which, as they explain, dominate at most energies
and can thus serve as a good proxy for total particle pro-
duction. This leads to a rich prediction for the probability of
particle production Ppog(E) = 1 — |SEF |, (E)|> above E = 3
given by [37]

Pyoa(E) = & x (E — 3)°

ST, 11(0) ~ (26)

« (E42y°2QE—1)*
9 (E—2)32(E—1)PE3(E+1)(E+3)3/?

dt 1 —1t2

<[ :
(1 _ (E=3(E+D) t2>‘/2

-1 (E+3)7(E—1)

+1

| — E=3E-2)(E+DQRE+1) 2
3(F — —1)2
« (E4+3)(E-1)(E+2)2E—-1) ) (27)
| — E=3E+DE+)
(E+3)3(E—1)(E-2)

The (E — 3)? factor in the first line of Eq. (27) indicates that
particle production turns on slowly as E crosses the threshold
for inelastic scattering. Importantly, the factor ¢ in the first line
is the same parameter that appeared in the expression (25) for
the elastic phase shift.

By the optical theorem, particle production results in a
branch cut at E > 3 that contributes to the elastic scattering
amplitude. This contribution, computed in Ref. [37], modifies

Eq. (25) according to STF_,(0) — STEE ,(0) + ASTE |,(0),
where to leading order in ¢

. isinhg [ Poroa (V)
ASTTE 11(0) = — / )
1

dv,
727 Ji125 (sinh? 0 — v) /v

(28)

E*(E?—4m?)
e
that m; = 1.) This expression is O(e), since Ppoa(v) in
Eq. (27) is proportional to €.

In Eqgs. (25) and (27), the phase shift below the threshold as
well as the particle production above the threshold depend on
the single parameter ¢. However, the exact relation between
¢ (or alternatively & in IFT) and the coupling on the lattice,
£l = |21/ (1 — g¢)'/8, is not known a priori and needs to be
extracted from the simulation.

Our results for scattering in IFT near the free fermion
point are summarized in Fig. 6. As is evident from Fig. 6(a),
the simulations reproduce the expected (E — 3)* increase in
particle production probability near the threshold. We obtain
the parameter ¢ by fitting 1 — Pyoq(E) from Eq. (27) to the
probability of 11 — 11 scattering obtained from MPS simu-
lations for different values of the lattice coupling via Eq. (22).
The relation between Slfm and ¢ is linear at small ¢. Since the
values of &2, in our simulations are chosen to differ by factors
of four, this should also be true for the obtained values of ¢, at
least within some error which comes from corrections at the
next order in €. And in fact, the ratio between two subsequent
values for ¢ is 3.97 and 4.12, respectively, in good agreement
with expectations.

The values for ¢ obtained from the probability fits can then
be used to make sharp predictions for the time delay at low
energies. The solid curves in Fig. 6(b) show the time delay,
computed using Eqs. (25) and (28) together with the fitted
values for ¢ and truncated to first order in ¢. To indicate the
expected magnitude of higher order corrections we also show
a shaded region whose total width is twice the magnitude of
the O(&?) terms in Eq. (25).

To compare these theoretical predictions to our simulation
we first extract raw values of the time delay from the simulated
MPS wave functions by using Eq. (21) (those values need
to be corrected, see below). We choose the state |¢(0)) in

with v = . (Recall that we have chosen units such
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Eq. (20) to be the initial state at 520 steps (the precise step
number does not matter in practice). This is well before the
scattering event, but much after the integrator has acted on the
state several times. The final state [ (7)) in Eq. (20) is chosen
from the scattering out-region, defined to consist of the last
1000 simulation steps before the energy 100 sites from the
boundary of the dynamic window becomes larger than 1076
in lattice units. This ensures that boundary effects are small.
We compute three values for the time delay, using the states at
steps 0, 500, and 1000 in the asymptotic out-region. In theory,
the three values should agree; however, in practice, we find
that the number fluctuates. The data used to produce Fig. 6(b)
is the average of the three results, and the error bars span the
range between the largest and smallest of the three values. We
find that the computed time delay has a mild dependence on
our choice of asymptotic out-region.

Given time and computing constraints, we were not able to
go to a parameter regime that would allow us to reproduce
the trivial S-matrix of the FF with high accuracy. Instead,
our simulations of particle scattering at &, = 0 produce a
(momentum-dependent) time delay of (0(0.01); see the right
panel of Fig. 6(b). The simulation data is consistently biased
in favor of a negative time delay. We expect that this mis-
match comes at least in part from finite step size dfy in the
RK4/5 integrator and present some evidence for this claim in
Appendix E 2. To correct for this effect we subtract the time
delay at &, = 0, which should ideally be zero, from the time
delays at &, # 0. This corrected data is displayed in Fig. 6(b)
and agrees well with the theoretical predictions.

V. NEAR Es THEORY

We can also consider small perturbations away from the
other integrable point, the Eg theory at n = 0. At the Eg point,
the S-matrix for elastic scattering for the two lightest particles
consists of three CDD factors,

sinh  +isino;

3
Stn@ =]

TR E— 29

> >sinh 6 —isino; 9)

The poles at o) = 27”, o) = 2?”, o3 = 23—’6 correspond
to the three lightest particles with known masses

my =2cos(o1/2) =1, mp =2cos(az/2)~ 1.618, and
m3 = 2cos(wz/2) &~ 1.989, cf. Table I. Upon deforming the
theory by perturbing the transverse field away from g, = 1 the
locations of the poles change [39]. The first few corrections
in perturbation theory are [8]

2

= 5 =237 =455 + 00", (30)
2 2 3

@ =35 8.497n — 43.42n* + O(n), (3D

where m; is fixed at 1 (or equivalently «; is fixed at ZT”).
The parameter 1, defined in Eq. (2), determines the defor-
mation away from the Ising CFT and is related to the lattice
deformation 1y, given in Eq. (4), by n = Bnjan + O(nﬁm), for
some proportionality constant 8 that can be extracted from our
simulations. In contrast to the situation near the free fermion
theory, we can use the fact that we have more than one stable
particle to compute 8 by matching Eqgs. (30) or (31) to the

1—Piisn

T near . FF

E

mi1 + ma mi1 +ms

FIG. 7. Blue curve: Close to Eg we expect particle production
to increase each time a new inelastic channel opens up, but to fade
away eventually so that Pj,_;; approaches 1 at high energy. Red
curve: Close to the free-fermion limit we expect inelastic scattering
to become dominant so that P;_,; approaches O at high energy.

spectrum obtained from an MPS ansatz; we find g ~ 0.28.
See Appendix A for details. As a result, and unlike near
the free fermion point, we obtain predictions for scattering
probabilities and the time delay without any free parameters.

At small but nonzero n the particles can scatter inelasti-
cally. We show the qualitative behavior of particle production
close to Eg in blue in Fig. 7. The shape is dominated by sudden
increases in production probability every time a new inelas-
tic channel opens up, followed each time by a subsequent
drop in the production probability as the energy increases. In
particular, sizable jumps in the production probability occur
at threshold for the channels 11 — 12 and 11 — 13. Other
two-particle channels such as 11 — 22 occur at higher order
in n and are thus practically invisible when 7 is small. The
multiparticle production threshold for 11 — 111 starts out
very smooth, because three-particle production is kinemati-
cally suppressed near the threshold. Our expectations at high
energies come from a conjecture by Zamolodchikov [20],
which we will discuss in Sec. VII.

When m3 crosses the threshold it becomes an antibound
state and the 11 — 13 channel closes.” However, it is possible
that new antibound states or resonances appear which increase
the probability of scattering into stable final states, such as 12
or 111. We do not have a clear picture of what happens, but
as we will see below, our simulations suggest enhancement
of inelastic scattering probability around E = m; 4+ m3 even
after mj has left the spectrum of stable particles.

Figure 8 shows the inelastic scattering probabilities ob-
tained from our simulations. Ignoring higher-order correc-
tions, the inelastic scattering probabilities are proportional to
n*; we have therefore divided the probabilities by 12, and we
find as expected that plots of the rescaled production prob-
ability versus energy for different (small) values of n nearly
coincide.

3See Ref. [39] for a discussion of the fate of the m, and ms pole as
we increase the coupling.
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FIG. 8. Rescaled production probability for values of lattice 1y
close to Eg and the unscaled probability (inset). The results are
mostly obtained for D = 64 but the dependence on bond dimension
is negligible, see Appendix F1. There appears to be a jump in
production close to m; + m, and m; + m3. We shade the threshold
regions m; + m, and m; + mj for the range of 1 used in the numeri-
cal results.

Because the inelastic production probability as a function
of energy has an intricate structure in the regime near Eg,
and the wave packets used in our simulations are relatively
broad in momentum space, it is difficult to perform a detailed
comparison between our simulation results and theoretical
expectations (such a comparison is easier in the regime near
free fermions, because there the production probability is a
reasonably smooth function of energy). We can, however,
verify that the simulation results in Fig. 8 capture the basic
qualitative features shown in Fig. 7. We perceive, for example,
a bump in production probability near the thresholds for the 12
and 13 channels.

A more quantitative comparison of theoretical predictions
with our numerical results can be achieved by computing the
time delay in the 11 — 11 elastic scattering channel. In par-
ticular, elastic scattering near Eg exhibits narrow resonances,
a feature which is absent near the free fermion limit, and
these resonances can be characterized in detail. To analyze
these resonances, one observes that the Eg theory has five
stable particles with masses above the two-particle threshold.
Out of these, the two lightest have masses my & 2.405 m;
and ms ~ 2.956 m; [10]. Since they are not protected by any
symmetry, these stable particles of the Eg theory become
resonances when 7 is nonzero and small; the associated poles
in the S-matrix move off the real axis into the complex energy
plane. Hermitian analyticity requires that any generic reso-
nance corresponds to a product of two CDD factors®; for each
particle type j = 4, ..., 8, the S-matrix acquires a factor

sinh @ + isinq; sinh6 + isinoj

sinh@ —isine; sinh6 —isinay

S @) =+ x (32)

The exception is m3 which turns from a virtual state into a reso-
nance when Re(a3) = — 7. In this case, one CDD factor is sufficient
to satisfy analyticity.

Each pole is accompanied by a nearby zero and thus the
effect on the scattering phase shift is well localized around the
resonant energy. Therefore, when the energy is close to my, it
is a good approximation to include only the contribution from
the my4 resonance and ignore heavier resonances. We have
checked that the ms resonance is negligible in the following
discussion.

As a result, below threshold and near Eg the S-matrix can
be well approximated using Eq. (29) with «; and a3 given by
Egs. (30) and (31), multiplied by Eq. (32) with [8]

Re(my) = 2.404 + 2.33n + O(n?),
Im(my) = —=3.710% + O), (33)

from which oy is obtained through my = 2 cos(a4/2). Since
we do not have data on the O(5?) correction to Re(my), we
set it to zero and effectively used Re(my) = 2.404 + 2.33n +
Om?). At n =0, a4 is purely imaginary and Eq. (32) does
not contribute to the S-matrix since all poles and zeros in this
expression cancel. For nonvanishing 7 the zeros in Eq. (32)
are moved to the physical sheet (0 < Im6 < ) of the S-
matrix, while the poles are shifted onto the unphysical sheet
(m < Im6 < 2m). This creates a narrow resonance.

The resulting time delay and simulated data are shown in
Fig. 9. As one can see from these plots, the simulation agrees
well with theory in the vicinity of the Eg point, including the
presence of a resonance at the expected energy. Note that the
error bars, which are obtained in the same way as for the free
fermion simulations by measuring the time delay at different
times in the asymptotic out-region, are much smaller than in
the near free fermion case. The reason is that the time delay
is much larger in the vicinity of Eg limit. Thus, the constant
magnitude simulation error results in smaller relative error.

VI. RESONANCES

In interacting theories, particles that participate in scat-
tering processes and have masses above the two-particle
threshold generically decay into lighter particles. Such unsta-
ble particles are characterized by their mass m and their decay
width I'. In scattering theory, unstable particles appear as
resonances, i.e., features in phase shifts localized in a region
of size O(T") around the total scattering energy E = m. In the
S-matrix, unstable particles are poles at complex values of the
energy Epole =m — i g

As mentioned in the previous section, the integrable Eg
theory at n = 0 contains particles with masses above the two-
particle threshold E = 2m; which become unstable when we
perturb away from the integrable point. Their effect on the
time delay can clearly be seen in Fig. 9. These resonances
have been studied both analytically and numerically [16,39],
but their properties in IFT far from the integrable theory have
not been well established.

The preceding section suggests that properties of the res-
onances can be obtained at least in principle by fitting the
parameters «; that appear in Eq. (32) to the time delay shown
in Fig. 9. Here we describe an alternative method of extracting
the resonance mass my4 and decay width I'y from our simu-
lations, by performing temporal and spatial fits to simulated
wave functions.
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FIG. 9. Time delay for elastic 11 — 11 scattering near Eg. The solid lines show the predictions from form factor perturbation theory. The
dashed lines show the expected time delay in the absence of resonances. Neither prediction contains contributions from the 11 — 12 threshold
or any higher threshold.

To understand how a resonance is manifested in the wave interfere destructively, owing to an approximate phase differ-
function, consider a simple model S-matrix for scattering in ~ ence of A¢ = m. As explained in Appendix G2, this gives
the presence of a resonance. Close to a resonance of mass rise to the appearance of two parallel tracks in the out-state,
m and decay-width I', the 11 — 11S-matrix, which describes which are clearly visible in Fig. 2(b) as well as Fig. 10. The

scattering of two particles of mass m, takes the form spacing of these two tracks is mostly determined by the width
T of the wave packet, not by the lifetime of the resonance.

ST (E) = E-m—i; (34) An explicit computation (Appendix G 1) shows that the

H=1 E—m+ i% ' pole contribution to the wave function is proportional to a

temporal decay factor exp(— %t) and thus we expect the prob-

with a pole (zero) at E = m F il" /2. S;rfi 11(E) is a pure phase ability of finding a particle at any fixed lattice site n to decay
¢ E) with Sffi“(E = m) = —1 atresonance and S;r;’i“ — exponentially with rate I'. Moreover, since the wave packets
1 at high energies, where E dominates both numerator and
denominator.
The associated time delay of the outgoing particles near 10°
the resonance compared to the free trajectory, Eq. (8), is given N — AB(w=160)
by a Breit-Wigner distribution with width I" peaked at E = m 2 \\\ P-11)
and approaching zero as E goes further from m, 5 \\\
= N (a)
A= 35 L N
(E-mP+5 RETSY \\\
Hence, the resonance has only a small effect on scattering T . T 1 .

;)hysical time

when |E — m| > I'. However, as can be seen from Fig. 9, the
time delay varies sharply with energy when the total energy E

is close to the resonance mass m. 1500

In the simplified case where the state of one particle is a ;é
Gaussian wave packet centered at momentum p, and the other & 1000
is a plane wave of energy E, the outgoing wave function takes g
the form =

500

o o2 .
_C7 / dp e‘T(P—Po)ZS(E(p) 4 E2)e—l(Ef—Px).
A/ 27 J—c0 0 50 100 150 200 250 300 350

(36)

As discussed in detail in Appendix G 1, this integral can be _:]

. . —4.00 -3.75 —3.50 -3.25 -3.00 -2.75 —250 -—2.25
approximately evaluated by deforming the contour to a path log(A¢)
along which the phase is stationary. At sufficiently late times
(or large distances), the integration contour is deformed across FIG. 10. Upper plot (a): Exponential decay in time near the
the pole in the S-matrix at E(p) =m — E, — ig, which by form-factor predicted m, resonance energy, showing the the excess
the residue theorem gives an additional contribution centered  energy AE in a spatial window of width 160 at the scattering center
at E = m. If the incoming particles are wave packets with and the portion P(— 11) of the wave function outside the 11 sec-
momentum distributions much broader than the decay width tor. Here, ny ~ 0.7052 (g, = 1.07, g, = 0.01315), E/m; ~ 2.81,
I', then the contribution from the deformed contour and the 0 /2¢ ~ 13.3, and D < 64. Lower plot (b): the local excess energy
contribution from the pole can be of the same magnitude and ~ Ae(n, 1) = (h,71); — (™) 4, as a function of time and position.

Y, x) =
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in our scattering simulations are narrow in momentum space,
one can compute energy density expectation values using the
same saddle point approximation that is used in Appendix G 1
to compute the wave function. One thus expects to find the
same exponential decay in energy density expectation values.
Therefore the above discussion suggests that one can extract
the decay width I" of resonances by fitting an exponential to
energy densities or probabilities at late times.

However, in practice, the energy density and wave function
at late times show oscillations and possibly other spurious
effects coming from the presence of thresholds and poles
in the S-matrix. Such oscillations can for example arise if
the scattered wave function contains several resonance-like
contributions which, when computing the probability, lead to
interference effects. Nonetheless, if there is a dominant contri-
bution coming from a single resonance, then we should expect
that the decay rate of the energy or probability averaged over
a very large window shows an exponential decay with rate I".

In fact, as demonstrated in Fig. 10, the exponential decay
can indeed be observed in our simulations by estimating two
quantities which have approximately the same decay rate: The
first quantity is the excess energy (relative to the vacuum)
within a spatial window

no+w/2—1
AE(mo,w, 1):= Y ((BN) = (B ), (37)
n=np—w/2

where £%Y™" is the unique spatially symmetric energy-density
operator on the lattice, w is the window width, and we choose
the center ng to be the spatial center of the scattering event.
The second quantity is the probability

P(—11,):=1—-P(11,¢) (38)

of finding the system outside of the numerically defined
asymptotic 11 sector at time ¢.” This probability is easily
accessible, since P(11,¢) can be obtained using the methods
described in Sec. II D. In Appendix G 3 we argue that the time-
dependence of P(— 11, ) directly follows from the behavior
of the wave function at late times and that the rate of decay of
P(— 11, ¢) is indeed expected to be given by I".

The intuitive reason for the decay of P(— 11, ¢) is that the
projection onto the 11-sector approximately excludes every-
thing from the state that is not a combination of two freely
propagating m; particles, hence P(— 11) captures any portion
of the wave function which is “still resonating.” In addition,
it also captures any part of the wave function that escapes 11
via inelastic channels — something we must account for when
scattering near the inelastic threshold due to the finite energy
width of our wave packets. Indeed, such contributions due to
inelastic channels can also show up in the energy expectation
value, which does not discriminate between particle sectors.

We find fitting the decay of P(— 11) to be a more robust
means of determining the resonance width I'4 than fitting the
decay of AE(w,t) (see Appendix G4). To obtain I'y from

"Note that P(— 11, t) is not equivalent to Pyroq of Sec. IV. The latter
is the probability of not being in the asymptotic 11 sector when all
particles are well-separated. Thus, Pyoq is the limit of P(— 11, ¢) for
sufficiently late times.

our simulation, we scatter two particles of type 1 at energies
close to the resonance energy. We then compute the temporal
evolution of P(— 11,¢) by projecting the wave function at
time ¢ onto an MPS basis for 11, as defined in Eq. (19),
where the excitation tensors are separated in space by a speci-
fied minimum distance to avoid interaction effects, defining
an approximate asymptotic regime. For this projection, we
account for momentum dependence of the excitation tensors
as described in Ref. [18], although we observe the correc-
tion to the probabilities to be small, presumably owing to a
weak dependence of the tensors on momentum and the spatial
broadness of our wave packets. We fit P(— 11, ¢) using the
ansatz (c.f. Appendix G 3)

Aeint + Pleak 5 (39)

where the factor A represents a time offset (the start of the
decay) as well as the amplitude of the decaying portion of
the state, and P represents a constant offset from zero,
accounting for accidental leakage into inelastic channels due
to proximity to the m; 4 my threshold. In our simulations,
leakage is especially important far from Eg, where the reso-
nance moves closer to m; + my and our wave packets have
nonnegligible support at and beyond this threshold; see Ap-
pendix G 4 for details. The best-fit value for I'4 in Eq. (39) is
then reported as the decay width of the resonance.

We can also estimate the mass m4 of the resonance, for ex-
ample by simulating scattering events at different energies and
finding the energy for which the contribution of the second set
of tracks to the scattering process is largest. However, a more
efficient and accurate method is to exploit the fact that any
simulation close enough to the resonance to witness its decay
already contains information about its energy: In Appendix
G4, we show that a Fourier analysis of the spatial secondary
tracks in the outgoing wave function projected into the 11
sector can deliver a precise estimate of m4. We also show in
Appendix G 1 that a spatial section of the wave function, and
thus also the excess energy density, has a decay rate related
to a certain combination of the mass of the resonance and
its decay width, in principle providing a further means of
estimating my4. However, in practice we find the method just
described more useful.

We compute 'y and my using simulations across a range
of nNiay, both close to and further from Eg, at a few different
values of the correlation length in lattice units. We also check
the robustness with respect to the MPS bond dimension and
integration time-step size, as well as the wave-packet width.
For details, see Appendix G 4. In Fig. 11, we plot our fitted I'y
values from P(— 11, t) against my estimated via Fourier anal-
ysis of the outgoing wave functions. We compare the data with
the form-factor perturbation theory prediction Eq. (33) as well
as with data computed using the truncated free-fermion space
approach (TFFSA) of Ref. [16]. We note good agreement with
the latter, especially near Eg. Further from Eg the agreement is
less clear and our data gives us a broader spread of decay rates.
Our analysis suggests the spread is mainly due to the difficulty
of fitting accurately in a regime where leakage into the 12 and
21 sectors becomes significant, limiting the window of time
in which resonance decay dominates P(— 11,¢). Increasing
spatial wave-packet widths (and hence the MPS window size
N) further would likely improve these results.
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FIG. 11. Comparison of I'y and m, obtained from fitting to our
simulations (blue dots) with the form-factor prediction (black line)
and TFFSA data (red crosses) taken from Ref. [16]. The maxi-
mum MPS bond dimension in our simulations is 64 and multiple
simulations at different lattice spacings and energies are shown at
each my value (see Table V). Fitting 'y is more difficult further
from Eg, at larger my, as evidenced by the greater vertical spread.
Inset: Relative difference between simulated and form-factor values,
showing convergence as we approach the Eg point.

VII. HIGH-ENERGY SCATTERING

In the previous sections, we considered particle production
close to the two integrable limits of the IFT. We now focus
on another interesting limit: scattering at high energies for
values of 7 that interpolate between the two integrable points.
In general, the high-energy behavior of the continuum theory
is difficult to study on the lattice because we are limited to
energies such that lattice artifacts are under control. Hence to
accurately probe very large energies, we need a very small
ratio of lattice spacing to correlation length, which is numeri-
cally expensive. Nevertheless, our numerical results arguably
capture some instructive features of the continuum IFT at
relatively high energy.

The main question of interest is whether elastic or inelastic
scattering becomes dominant in the high-energy limit. We find
evidence suggesting a change in behavior as 7y, varies, with
elastic scattering dominating at high energies for small 7,
and inelastic scattering dominating at high energies for large
Naw- Our studies of inelastic particle production in Secs. IV
and V already point in this direction. We found that the pro-
duction probability increases with increasing center of mass
energy in Fig. 6(a) (close to free fermion theory), and de-
creases with center of mass energy in Fig. 8 (close to Eg),
apart from transient spikes near thresholds.

This behavior supports Zamolodchikov’s proposal [20]
that a crossover/transition occurs at some 7. such that
S11511(00) = +1 for n < ne and Sy1-,11(00) = 0 for > 1.
A toy S-matrix illustrating how this change of behavior might
arise is

S(E) >~ f(E)+ (E), (40)

E+i/e®
where € parametrizes a pole in the complex energy plane.
For any finite €, S(00) >~ f(oc0) + g(oo). But if € = 0, then
we have S(o0o0) =~ f(oo) instead. A possible scenario is that
as n increases 1/e also increases, reaching infinity at a finite

P11—>11
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FIG. 12. High-energy behavior of scattering in IFT for E =
6,7, 8 in units of the lightest particle mass. The results indicate that
the large-E behavior changes around 0.7 < f¢jae S 0.9.

value 7., and thus triggering a transition between two different
values of S(00). In IFT, this behavior could occur because as 1
increases the particle with mass m3; becomes an unstable reso-
nance, and the corresponding pole in the S-matrix contributes
as in Eq. (40) and reaches infinity at some n = n,; see Sec. 3.2
in Ref. [39].

We sought evidence for such a crossover by estimating the
probability of elastic/inelastic scattering for energies where
our simulations provide a reasonable approximation to the
continuum IFT. The results for three different energies up
to E = 8m; are shown in Fig. 12. We find that close to the
free fermion theory (large 1)) the probability Py 11(E) =
IS11511(E)|* of elastic scattering decreases as energy in-
creases, while close to the Eg theory (small n,) it increases
with E. The crossover between inelastic-dominated scatter-
ing and elastic-dominated scattering occurs at 0.7 < nejan S
0.9; it would be fascinating to investigate whether the third
particle resonance mj3 indeed reaches infinity in the second
sheet around this value. Extrapolated to high energy, these
findings are at least qualitatively compatible with the parti-
cle production probability sketched in Fig. 7. The sensitivity
of our results to the simulation parameters is presented in
Appendix H.

VIII. SUMMARY AND DISCUSSION

Using real-time MPS simulations, we have studied the time
delays and particle production probabilities as a function of
scattering energy close to the free fermion and Eg integrable
points of Ising field theory. In all cases we found good agree-
ment with predictions from form-factor perturbation theory.
Additionally, we studied the my4 resonance near the Eg point
and found reasonable agreement with results obtained using
TFFSA [16].

Further, we have used our method to explore the high-
energy behavior of scattering in IFT. Zamolodchikov conjec-
tured that near the Eg point the scattering should be purely
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elastic at high energies, while near the free fermion point,
scattering should be completely inelastic. By extrapolating
scattering probabilities at moderate energies we found support
for this conjecture and were able to locate a possible region
far inside the nonperturbative region of the parameter space
where a crossover from trivial to completely inelastic scatter-
ing at high energies might occur.

The S-matrix is an analytic function of energy E on a
multisheeted Riemann surface which encodes the spectrum
and couplings of the theory. Features like resonances and
antibound states are encoded in poles that are a finite distance
away from the physical scattering region 4m? < E € R. We
have demonstrated that we can extract masses and decay
rates of resonance poles from our real-time simulations, and
hence infer features of the S-matrix’s analytic structure. Our
work demonstrates how real-time simulations of elastic and
inelastic scattering phenomena provide an instructive non-
perturbative tool for exploring the space of two-dimensional
quantum field theories that arise as scaling limits of quantum
spin chains.

However, to extract more precise data further work is
needed to improve our methods. For example, when ex-
tracting the time delays near the free fermion theory, we
leveraged our knowledge that time delays vanish in the free
theory to subtract a systematic error and hence obtain ac-
curate results. Far from the integrable points, however, we
know little about IFT and alternative schemes will be needed;
hence, we have not yet attempted to predict the time delay
far away from integrability. One might attain more accu-
rate estimates of scattering phase shifts in this regime by
increasing the computational resources and/or modifying the
algorithms used for time evolution or extraction of the phase
shift.

Already in IFT there are many more open questions worth
pursuing such as numerical studies of IFT in Euclidean time
near the Yang-Lee point (see, e.g., Ref. [39]). Moreover, our
method based on real-time simulation could be extended to
hunt for resonances in the higher-energy region where inelas-
tic scattering can occur. By extending our analysis far into the
inelastic regime one might track the location of resonances
as a function of the deformation parameter 7, which could
provide, e.g., further insight into the role of mj3 for the high-
energy behavior of the scattering amplitude. Our methods can
also be applied to other theories beyond IFT, such as scalar ¢*
theory [28], the O(3) sigma model [40], the three-state Potts
model [41], and the Schwinger model [42].

Once precision data is obtained one might use numer-
ical results from real-time simulations as an input in the
S-matrix bootstrap [43—45], to further narrow down the space
of allowed S-matrices of nonintegrable, (1+1)-dimensional
quantum field theories. (Attempts to bootstrap the IFT include
[43,45-47].) Injecting approximate inelastic scattering proba-
bilities into the bootstrap program is expected to yield O(1)
improvements in bounds constraining the S-matrix [43,48—
52]. Even qualitative estimates indicating whether high-
energy amplitudes are mostly elastic or mostly inelastic could
be very useful. For example, the scattering of the excitations
of the one-dimensional QCD flux tube was introduced in Ref.
[53] and bootstrapped in Refs. [54-56]. We know little about
how this S-matrix behaves at high energy. Simulations akin to

our studies of IFT might help, starting with two-dimensional
adjoint QCD recently revisited in Ref. [57].

However, MPS methods like the ones discussed in the
present paper are best suited for studies of one-dimensional
systems, and even there are limited to simulations of processes
that do not produce profoundly entangled final states. Eventu-
ally, simulations performed on quantum computers will open
the door to compelling visualizations as well as quantitative
studies of higher-energy scattering events producing many
particles; see [36,58—63] for steps toward this goal. Until then,
as we have demonstrated, real-time MPS simulations of scat-
tering in (14-1)-dimensional quantum field theories provide a
powerful tool to gain both intuition and quantitative results
addressing many open questions.
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APPENDIX A: ISING SPIN CHAIN TO ISING FIELD
THEORY

The two-dimensional Ising CFT and its deformations can
be obtained as a scaling limit of the Ising spin chain which has
the Hamiltonian

N-1
H=—
J

(050711 + 8:07 + 8.05), (A1)

Il
o

where o, and o, are Pauli matrices. Since the Hamiltonian
is geometrically local, one can approximate its ground state
using an MPS with a modest bond dimension. When g, = 0,
the model can be mapped to the free Majorana fermion with
dispersion relation

e(k) = 2,/1 + & — 2g, cos(h), (A2)

where k denotes the wave number in lattice units. For g, =
1 and in the limit N — oo we obtain the free fermion Ising
CFT with central charge equal to 1/2, where the associated
correlation length £ of the lattice model diverges.

When g, =0 and g, = 1+ 6, we obtain a free fermion
QFT with mass proportional to §. More generally, taking the
N — oo limit for finite couplings, we can access a family
of gapped continuum QFTs by scaling g, — 0 and g, — 1
while keeping a suitable ratio of those two coupling constants
fixed. Specifically, we may choose the couplings to scale with
a parameter i — 0 as

g—1~u, g ~us, (A3)

hence fixing the ratio ny, defined in Eq. (4). For generic
values of 1, between 0 and oo, we obtain a nonintegrable
IFT with a varying number of stable particles. Choosing spe-
cial values of ny as u — 0 yields integrable theories: The
massive free fermion theory is obtained in the limit 7, — o0,
and the integrable Eg theory is obtained for ny,y = 0.

This one-parameter family of continuum QFTs can also
be obtained by deforming the continuum theory by relevant
operators, as explained in the introduction. The resulting
theories can be parametrized using 7, a dimensionless ratio
constructed from the dimensionful couplings which control
the deformation, defined in Eq. (1). The relationship between
the parameters 7 describing IFT and 7y, defined in terms of
lattice Hamiltonian is not straight-forward but can be deter-
mined by comparing physical data between the lattice and
CFT definition of the nonintegrable theories.

For example, at the Eg point n = 0, there are three stable
particles with masses m;, m,, ms (Table I). As n increases
from O toward the free-fermion integrable point ( — 00),
the masses m; and mj3 increase, eventually crossing the stabil-
ity threshold and becoming virtual states. This phenomenon
has been explored in previous work, and the values and 1,
n3 where the second and third stable particles of Eg theory
become unstable have been calculated using continuum form-
factor perturbation theory. In particular, Ref. [8] found n, =~
0.333(7) and 13 & 0.022, in agreement with earlier results of
Ref. [14].

Thus, one can compute m,/m; as a function of n and
obtain Eq. (30) where m; = 2 cos(az/2). On the lattice side,
the spectrum of low-lying excitations can be computed us-
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FIG. 13. Mass of two lightest particles in IFT as a function of
magnetic deformation at g, = 1.

ing a variational ansatz [64]. This again produces my/my,
but now for a range of 71y, which can then be fitted to the
functional dependence of my/m; on n. Surprisingly, we find
that for a large range of values, namely all the way to the
point where m, becomes unstable, the relationship between
the lattice and continuum couplings is almost linear n &~ B
with 8 =~ 0.28.

This method is limited by the reliability of form-factor
perturbation theory, as well as limits of the variational method
we use to extract the particle spectrum from the lattice the-
ory. Notably, the variational method is limited to particles
below the two-particle threshold £ < 2m, since it relies on
there being a gap between the targeted particle-like excita-
tion and other nearby excitations [64]. Indeed, convergence
of the method slows down as this gap closes. Beyond the
two-particle threshold there exists a continuum of scattering
states in addition to any further stable particles, which violates
the gap assumption. Indeed, convergence problems mean that
we cannot reliably compute m;, or ms when they are very close
to 2m;. This makes it difficult to estimate 13 1o in particular,
because mj is already very close to 2m; at Eg. This also
implies that near and above 17, we need to rely on matching
other physical predictions such as phases or probabilities, as
is done in Sec. I'V.

As another check that our lattice computations match con-
tinuum results, we consider how masses of stable particles
depend on g, when g, = 1. The renormalization-group analy-
sis predicts that masses scale as |g.|%/!°. As shown in Fig. 13,
we find good agreement with this prediction for both m;
and m;, and the ratio of the slopes is consistent with m, =
1.618 m; as expected from the continuum theory. The masses
of particles at Eg were also computed in Ref. [65] using tensor
network methods.

APPENDIX B: CONVERTING LATTICE
TO CONTINUUM UNITS

The parameters used in the simulations are given in di-
mensionless lattice units where m; = ¢ = 1. We obtain the
conversion factors from the lattice by computing the spectrum
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FIG. 14. Spectrum obtained from an excitation tensor ansatz can
be fitted with a relativistic spectrum to obtain the conversion factors
between lattice and continuum. In this example, we have chosen
g = 1.003 and g, = 0.005 with n, ~ 0.0506. The fit parameters
are given by ¢ ~ 2.000, m ~ 0.079.

for the lowest mass and fitting a relativistic spectrum of the

form
Elalt(platt) = \/m (B 1)

to the first two data points. Conversion between lattice and
continuum units is then given by Eppys = Ejant/ (mc?), Dphys =
Pra/ (ME), fphys = Me? fla, and Xppys = ME X An example is
shown in Fig. 14.

APPENDIX C: TIME DELAY

To understand why the quantity given in Eq. (8) is called
time delay consider a scattering experiment. For simplicity
we take the case where a wave packet is scattered against a
target in 141 dimensions. At early times the wave packet is
given by some asymptotic state |y, (7)). At late time, after
the scattering, the quantum state is given by |¥q,(¢)) which is
related to the in-state via

[Vou(®)) = S [Yin (D)) , (CDH

where § is the S-matrix and both [¢i,(7)) and |You(?))
time-evolve with the free Hamiltonian. In a position space
representation this results in a wave function of the form

p=po)*
Voult, x) ~ f dpeErhir e S 5, (C)

and ¥y, (¢, x) is given by the same expression with S(p) = 1.
To get a spatial profile of the wave function after scattering,
we can approximate the integral in Eq. (C2) by the leading
saddle-point contribution, which is valid if the momentum
space width o of the wave packets is sufficiently small. Up
to a phase and constant factors, this yields a Gaussian wave
packet

You(t, x) ~ exp (—o*(td,Ey — x + i3, log S(pp))*), (C3)

where Ey = E(po). Thus, while before the scattering the wave
packet was centered around the trajectory x(t) = vt, with v =

0pEy, after the scattering it follows the trajectory

x(t) =v(t — At), (C4)

with time delay

At = —idg log S(po). (C5)

Depending on the momentum dependence of S(p), the wave
packet thus arrives later (Ar > 0) or earlier (Ar < 0) at a
given location, which justifies the name time delay. If instead
we scatter two wave packets, then at leading order each wave
packet suffers a time delay given by the derivative of the S-
matrix with respect to the wave packet’s momentum evaluated
at the scattering energy.

APPENDIX D: HYPERPARAMETER DEPENDENCE
OF TIME DELAY

1. Minimum distance of excitation tensors Anpy;,

In this work we are, amongst other things, interested in
the time delay of two-particle scattering below the inelas-
tic threshold. To obtain the time delay, we project outgoing
states onto a certain set of plane-wave states, as explained
in Sec. I D 0 a. To construct those plane-wave states we
insert excitation tensors into a vacuum MPS and Fourier trans-
form with respect to their location. The Fourier transform
of a single excitation tensor creates, to good approxima-
tion, a state in the one-particle subspace of the Hilbert
space. However, bringing two excitation tensors close to
each other creates a state whose overlap with other n-
particle states is not controlled. We therefore implemented
a constraint that the insertions of two excitation tensors
in the Fourier transform have to be at least Angy;, = 100
sites apart.

To check that our results do not significantly depend on this
choice we have repeated the computation for different choices
of this gap size and for different datasets. Examples of such
data from near the free fermion point are shown on the left
in Fig. 15, which indicates that the relative error is typically
below 5%.

2. Finite momentum difference

Similarly, in the computation of the time delay we have to
take a difference between phases corresponding to different
momenta. Due to numerical artifacts, the result will depend
on a choice of Sk, the difference of the lattice momenta. In
the right panel of Fig. 15 we show the relative error in the
time delay for different choices of §x. As can be seen from
the plots, the results for different choices agree to within 10%
with the value used in the main text (5« = 0.001).

c. Bond dimension

In Table I we show the dependence of some our simula-
tions used to determine the time delay on bond dimension. All
simulations are close to the free fermion theory, since here
the time delay is smallest and thus the relative error would
be biggest. As we get closer to the free fermion theory, there
still is some dependence on the bond dimension D, even for
D > 64. However, as we discuss in Appendix E 2, the main
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FIG. 15. (a) Relative error of the time delay as a function of energy for different choices of minimal distance between excitation tensors in
the reference state. (b) Relative error of the time delay as a function of energy for different §x. The gap is Any,, as defined in Eq. (19).

source of uncertainty comes from the choice of time-step
size. Unfortunately computational constraints prevent us from
increasing both the bond dimension and decreasing the step
size. Therefore, we focus on improving our simulations by
going to step-size dfix = 0.04 but stay at a bond dimension
of D = 64.

APPENDIX E: NEAR FREE FERMION THEORY

1. Relative probabilities of 11 — 111 scattering
The relative probability plotted in Fig. 5 is given by
(A/B)/(A/B)y=1, where

A=4(x+y xy+ 1)

Py —xyt —x+4y)

x(xty = x*y? —x
x (xty — 2x%y? — 2x° 4 5x%y — 2xy? — 2x + y)?
x (2xty — 2x%y? — X3 4 5x%y — xy? — 2x + 2y)?
x(2xty — x¥y? — 2x% 4 5x%y — 2xy° — x + 2y)°

B =y(x —y)*(x* —xy + D(xy — 1*(x*y —x +y)

TABLE II. Dependence of the simulations for time delay on the
bond dimension with dt, = 0.05, 0 = 100 and N = 2000.

D 8x 8z Matt E —185 lOg N
64 1.2 0.0062 3.0 2.33 —0.116
72 1.2 0.0062 3.0 2.33 —0.116
64 1.2 0.0062 3.0 244 —0.100
72 1.2 0.0062 3.0 2.44 —0.106
64 1.2 0.0031 43 2.34 —0.040
72 1.2 0.0031 43 2.34 —0.037
64 1.2 0.0031 43 2.44 —0.035
72 1.2 0.0031 43 244 —0.029
64 1.2 0.0016 6.2 2.33 —0.023
72 1.2 0.0016 6.2 2.33 —0.022
64 1.2 0.0016 6.2 244 —0.022
72 1.2 0.0016 6.2 244 —0.017

x (1% = xy + ¥ (2 — xy + 1)
<2 —xy+ D@2y —x+y)

xvVxty =332 —xX3 —xly—xy? —x+y,

withx = \/%andy =/ }fﬁﬁ, where v > 0 is the velocity
of the right moving incoming particle (we assume two parti-
cles colliding head-on in the center of mass frame) and vpidqre
is the velocity of the middle particle. The ratio (A/B) is the
five particle form factor of the o operator times the relevant
phase space kinematical factor to convert it into an appropriate
probability.
Kinematically we have

x € [2.618, 3.732]

(ED)

since by assumption 3 < E < 4, so we are in the regime
where no more than three particles can be produced. We also
have

XS -6 —5xF—6x2+ 141
4(x3 +x)

defining the green region in Fig. 5. In that figure we took
x = 3 inside the range (E1). The outer boundaries of the blue
and yellow regions in that figure are given by the maxima and
minima velocities
V/x8 —6x6 — 5x* — 6x2 + 1
+ )
xt—x241

which three particles can kinematically access. The total prob-
ability Eq. (27) is the integral over all such allowed three
particles states. Indeed, the remaining integral over ¢ in that
expression is nothing but this phase space integral after a
simple rescaling [37].

Iyl < (E2)

(E3)

2. Correcting bias in time delay

Simulating IFT at n = oo, i.e., at the free fermion point,
we find an approximate time delay between —0.01 and —0.03,
depending on the scattering energy, while the expected value
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FIG. 16. (a) Time delays extracted from scattering simulations in free fermion theory (&, = 0), for three different values of the time step
size dt,y. The points are slightly displaced to make the error bars more visible. (b) Time delays with and without subtracting the value found

for free fermions.

is 0; see Fig. 6(b). This one-sided bias toward negative values
in the simulated data motivated us to hypothesize that the error
can be attributed to a systematic bias which is approximately
given by the negative of the time delay we find at the free
fermion point. After adding the bias to the simulated data
taken near the free fermion value of n we found good agree-
ment between the simulation and the theoretical expectations.

We checked the dependence of the time delay against var-
ious bond dimensions and while there is some change when
going from D = 64 to D = 72 as shown in Table II we find an
even stronger dependence on the step size dfj, of the RK4/5
integrator. In this Appendix we discuss the dependence of the
time delay on the step size and give supporting evidence that
the employed subtraction indeed improves the quality of the
data.

It seems plausible that errors in the MPS time evolution due
to the finite step size, while very small per step, accumulate
over the 20000 time-steps of each simulation in a way that
biases relative phases between two different states. To obtain a
qualitative picture of the dependence, we simulated scattering
in the free fermion theory at two energies for dfi = 0.04
and dt, = 0.025 in addition to the usual dfi, = 0.05. As
is shown in Fig. 16(a) we do find a significant dependence
on dtjy although the dependence does not monotonically
become smaller as we decrease dt,q,. However, note that
the errors we associate with those data points are relatively
large and so we can merely conclude that while the value of
dti,e seems to play an important role in our analysis, there
are additional factors affecting the time delay obtained from
simulations.

To test our hypothesis that the data suffers from a system-
atic bias that can at least in part be removed by our proposed
subtraction, we simulated scattering at two energies for all val-
ues of & shown in Fig. 6(b). We show the time delay with and
without subtraction in Fig. 16(b) for a step size of dtj, = 0.04
and dfi, = 0.05. While we are not able to make a very pre-
cise quantitative statement, we point out that qualitatively the

subtracted data points for different values of dt, are closer
together than the uncorrected ones. This indicates that at least
some part of the error comes from a df,-dependent bias
which is shared between all simulations at the same value of
dtiay.

APPENDIX F: NEAR Es THEORY

1. Hyperparameter dependence of probabilities

In Tables IIT and IV, we show the negligible dependence of
the bond dimension D on P;;_.1; for two different 7y, close
to Eg limit in Fig. 8.

TABLE II. D, Py, and E with dfi,s = 0.05, 0 =80, N =
1400, 7y = 0.152 (g, = 1.015, g, = 0.013) for results shown in
Fig. 8.

D Prisn E

32 0.9332 3.195
64 0.9353 3.195
32 0.9299 3.072
64 0.9290 3.072
32 0.9337 3.011
64 0.9335 3.011
32 0.9332 2.952
64 0.9320 2.952
32 0.9258 2.894
64 0.9252 2.894
32 0.9154 2.836
64 0.9153 2.836
32 0.9023 2.780
64 0.9031 2.780
32 0.9011 2.725
64 0.9026 2.725
32 0.9459 2.671
64 0.9452 2.671
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TABLE IV. D, P;;_ 1, and E with dfj, = 0.05, 0 =80, N =
1400, e = 0.106 (g, = 1.01, g, = 0.012) for results shown in
Fig. 8.

D P E

32 0.9656 3.108
64 0.9667 3.108
32 0.9653 3.046
64 0.9648 3.046
32 0.9681 2.985
64 0.9677 2.985
32 0.9649 2.865
64 0.9645 2.865
32 0.9588 2.807
64 0.9584 2.807
32 0.9490 2.751
64 0.9501 2.751
32 0.9482 2.695
64 0.9499 2.695

APPENDIX G: RESONANCES
1. Toy model

As discussed in Sec. VI, when the total energy E in an
elastic scattering process is close to a resonance, we expect
to observe exponential temporal decay in outgoing scattering
wave functions. The decay rate is closely related to the reso-
nance width I", as we will now explain.

Consider the toy S-matrix

.T
E—m—li

SToy )y — "2
11—>11( ) E—m—i—i%

(GD)
of Eq. (34). It describes 11 — 11 scattering of two particles of
mass m near a resonance at mass m. To simplify our analysis,
we suppose that the wave function of the first particle is a
Gaussian wave packet in momentum space with mean py and
variance o 2, while the wave function of the other particle
is a plane wave with energy E; = 7. The (unnormalized)
outgoing wave function takes the form

dp e 5 PP S(E (p))e {EWI—P),

o o0
\/27’( \/—oo
(G2)
where E(p) = Ei(p) + % is the total energy, and E;(p) =

/P> + m?. In the complex plane, the integrand has poles (ze-

ros) where E(p) =m F i %, as well as branch cuts extending
from p = +im; along the imaginary axes, as shown in Fig. 17.

Using E(p) = E1(p) + % we can also express the locations
of the poles in terms of p and find that the poles occur at

Y, x)=

1 r
Pt = Zn* =) —mf - iTm. (G3)
If we let p> =A+iB, with A>0 and B <0 implicitly
defined in Eq. (G3), then we can write the corresponding
momentum as p = =+(a + ib), where

_\/XX b= BZX*‘ X:=,/1+ 1+B2 (G4)
CTNRT TV T TV T

p=1imi
X [e)
0] X
E(p) :m—zg

FIG. 17. Analytic structure of S7”. |, (E) in the complex momen-

tum plane. The circles denote zeros and crosses denote the poles. The
dotted line along the imaginary axis shows the location of branch
cuts.

As a further simplification, we assume that 2m; < m, so the
resonance is far from the threshold and the scattered particles
are highly relativistic. If additionally I' is small compared
to m, then we have B < A, X ~ /2 and thus a ~ VA ~ %
and b~ —%. If instead we write E(p) = E|(p) + E», and
expand to leading order in I', then we obtain another useful
approximation:

r (E; —m)?
br —— | 2T
2\ (E, — m)? — m?

As the resonance is at very high energy, we can approx-
imate the energy E(p) in the S-matrix by its ultrarelativistic
limit and hence see that the momentum integral has an iso-
lated pole. If we suppose that the wave packet is peaked at
the resonant energy po = a, then by changing the integration
variable to p := p — po, we have

(G5)

o 2P =I5 g
Ut x) ~ o dﬁe_TPZIj .ze—l(E(p)f—pX)el?X’

V2r J oo
(G6)

again assuming m 3> 2m; and I' < m; we have also assumed
that o is large enough so that the contributions far from the
resonance are negligible. While we used the approximation
E\(p) ~ |p| to derive Eq. (G6), there will be a contribution
from the pole located at p = ib even if the energy is not highly
relativistic.

To capture the most important terms in the wave function,
we may evaluate Eq. (G2) or Eq. (G6) using the stationary
phase approximation, which is justified if 2 is sufficiently
large. Thus we deform the p integration contour in Eq. (G2)
or Eq. (G6), such that it passes through a point of stationary
phase. The phase factor is stationary for p = pga = (%i(x —
vt), where v = 0E/dp. For large negative x — vt, the de-
formed contour that passes through pg,. sits well below the
resonance pole; therefore, by deforming the contour from the
real axis into the lower half plane, we pick up a contribution

from the residue of the pole. Thus, replacing E(p) = m — &
and p = ib (their values at the pole) we find
(Yz )2 som
Vpote(t, ¥) & —v/2xTge™> e 2le B (G7)
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Using the approximation b ~ —I"/2, we find that this pole
contribution decays exponentially with rate I'/2 when ¢t — x is
large and positive. If, however, t — x were large and negative,
then we would deform the p integration contour into the upper
half plane, picking up a contribution from the pole at p =
—2po — ib. The pole contribution would then be suppressed
by the factor. exp(—202(p(2) — b?/4)). Under the assumption
I’ « m, this contribution is negligible if the wave packet is
centered at the resonant energy pg & m.

Away from the ultrarelativistic limit, b deviates from —I" /2
as in Eq. (G5), and therefore the temporal and spatial decay
rates are not precisely the same. Instead we have

b r (E,—m3? T m? (G8)
) (Ez—m)z—mZN 2\ m?—dm3

Both I" and b can be determined from our simulations as ex-
plained below. From these values we can, at least in principle,
determine the mass m of the resonance by inverting Eq. (G5)
to obtain

m

1*2.
VI—m

As can be seen from this expression, I" /2|b]| is the velocity of
particle 1 such that the total energy of the scattering process
is exactly the resonant mass m. In practice, we use a different
method to determine the mass m of a resonance, explained in
Appendix G 4.

m=E, + (G9)

2. Decay and multiple tracks

This model helps us understand the origin of the gap be-
tween tracks visible in Fig. 2(b). As we will now explain,
the two tracks arise when the momentum-space width ¢! of
the scattered wave packet is large compared to the width of
the resonance (but still small enough to justify our stationary
phase approximation). After scattering there are two contri-
butions to the wave function, one due to trivial scattering and
one coming from the interaction mediated by the resonance.
Interference between those two contributions produces the
two parallel tracks seen in Fig. 2(b). Interestingly, and perhaps
contrary to naive expectations, the scale of the distance be-
tween the two tracks is not set by the lifetime of the resonance,
but instead by the width of the wave packet.

For simplicity, we again consider the relativistic limit £ ~
p, which implies that b &~ —g. As explained in the previous
section, the full wave function after scattering is given by ¥ =
1ﬁpole + wcomour’ where 1//pole is given in Eq (G7) and wcontour
is Eq. (G6) evaluated along the contour of stationary phase,

t—x)?

wcontnur(ta ‘x) ~ 67 202 ei(%X7mt)'

(G10)
Here we have assumed that ’U;;‘ > I', such that the pole is
picked up when we deform the contour from the real axis, and
the phase factor coming from the S-matrix is approximately 1.

The total wave function ¥pole + Yeontour i Only determined
up to a global phase. As can be seen from the explicit expres-
sions Egs. (G7) and (G10), the phase-factors ¢/(2*~") of both
contributions agree and we can thus choose the global phase
such that both contributions are real. Crucially, the two contri-
butions have opposite sign, which leads to the aforementioned

destructive interference and the appearance of two tracks. Due
to corrections to the stationary phase approximation that we
have ignored, this destructive interference is not complete.
Therefore, in practice the energy expectation value between
the two tracks does not reach its vacuum value.

The relative importance of the contribution to scattering
due to the resonance is controlled by the dimensionless combi-
nation ["'o. We are interested in the case of a narrow resonance
and therefore 'c « 1. Since the contour contribution decays
exponentially with exp(—(t — x)?/(20°?)) while the pole con-
tribution decays as exp(—I'(t — x)/2), we expect that the pole
contribution becomes important when ¢ — x is sufficiently
large. This is exactly when the approximation of the total wave
function as a contour contribution plus a pole contribution is
reliable.

Given our choice of phase, the total wave function (made
real by an appropriate choice of overall phase) is positive near
the unscattered trajectory at t — x = 0 and negative when the
pole contribution becomes important at some r —x > 0. At
very large t+ — x it vanishes. Thus, there is a local maximum
of the probability |1/ (¢, x)|? at some u 1=t — X = Uack, Which
becomes the location of the second track. This local maxi-
mum of the probability |y (¢, x)|? is a local minimum of the
wave function ¥ (¢, x); by differentiating Y¥pole + Yeontour With

respect to u and approximating ¢”°*/2 ~ 1 we find that that
the minimum occurs at u,c satisfying

2 202
[m 5 igacke” ek
_on-e Ctrack /2 — .
2 o?

Though we cannot give an explicit solution to this equa-
tion, we can estimate the behavior of solutions in the regime
of interest. Defining

(G11)

A = unu/o, y=To, (G12)
Eq. (G11) becomes
log <2;)+£=—logA+A—2, (G13)
yivm/2 2 2

which for y « 1 has the approximate solution

1 1
Upack /0 = A X 2\/10g — = 2\/10g (—) (G14)
y I'o

We conclude that the scale u,c of the distance between the
two tracks is set primarily by the wave-packet width o and
depends only weakly on the resonance lifetime I' .

We should check that our approximate solution for ek iS
within the domain of validity of our approximate evaluation of
the wave function. In our computation of V¥¢oneur We replaced
the phase factor in the S-matrix by 1, which is a reasonable
approximation for u/c? > T'. Furthermore, in this regime
the stationary phase condition is satisfied at p = —iu/o?, far
below the pole in the lower half plane, so the contribution
VYpole arises when we deform the contour.

3. Decay into the asymptotic 11 sector
The resonating component of the outgoing wave
function—a decaying, unstable particle—is, by definition,
outside of the asymptotic sectors of the stable particles. We
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see in our simulations, for example in Fig. 2(b), that resonant
scattering leaves an excitation which remains in the scattering
region for a long time. We observe that, as expected, this
excitation has little to no overlap with the asymptotic 11
sector. This can be clearly seen for example in Fig. 23, where
we plot “position-basis” probabilities for the left particle

P(11, n):= ZP(I], n,n), (G15)

where

P(11, n, ) == [{(n, By), (', BN)|Y)I? (Glo)

is defined using the orthonormal excitation position states of
Eq. (19). The probability of observing an excitation at position
n decreases near the central peak in the energy expectation
value at n ~ 1000. We should therefore expect the probability
P(—11,¢) of being outside of the asymptotic 11 sector to
decay in time with the resonance excitation.

In this section we argue that, in our resonance model
Eq. (G1) describing elastic scattering of two particles of type
1, P(— 11, 1) indeed decays exponentially in 7 at the same rate
I' as the pole contribution (G7).

If an on-resonance scattering event leaves a resonance ex-
citation in the scattering region, then we can conclude that the
probability of the state not being in the 11 sector behaves as

P(=11,1) ~ ap(1 — Py=yo (11, 1)), (G17)

where 1 — P>, (11, t) is the probability to find two particles
in the 1 sector outside a band of width 2x, around the scat-
tering region. Here xo must be chosen such that excitations at
|x] > x¢ can be treated as asymptotic states. The proportion-
ality constant o takes into account that our choice of xy may
exclude some 11 contributions within this central band. In this
case the time-dependence of the function Py~ (11, ¢) can be
computed from the results of Appendix G 1.

To obtain the time dependence of Py, (11,¢) (we will
assume that x > 0, the case of x < 0 follows analogously) we
proceed as follows. First, we split the region x > x into two
parts. The first region xp < x < x;(¢) is the region which is
far enough from the trajectory such that the exponential decay
of the wave function in ¢ and x as discussed in Appendix
G 1 is a good approximation. The second region x;(f) < x
contains the tracks. We choose x; () = X; + vt, where v is the
velocity with which the outgoing trajectories move outwards.
With this choice x(¢) is co-moving with the trajectories and
this guarantees that Py, (11, t) is constant. The remaining
contribution Py, )=y, (11, ¢) is then proportional to a spatial
integral over the absolute value squared of the wave function
~exp(—I't — 2bx) as discussed in Appendix G1, i.e., the
integral

x1(1)
e*l—‘l f dxefsz ~ e*l—‘l (efzb()_CH»vt) _ e*2b)€o)
Xo (G18)

~ e—2bf€1

_ 2Tt

where we have used that I'/2b = —v—see the discussion
around Eq. (G9). In total, we therefore find the functional
dependence

P (11,1) X oy + e, (G19)

with some time-independent quantities ;. Using the relation
(G17) it immediately follows that the functional dependence
of P(— 11, t) on time has the same structure,

P(=11,0) % B + e, (G20)

where f; = op(1 — «;) and B, = —apay. We can fix the value
of By by requiring that as t — oo the probability P(— 11, 1)
approaches P,x, which is the probability of ending up in
another asymptotic state, and thus we can conclude that

P(=11,1) = Ae™"" + P, (G21)

for some constant A.

4. Extracting resonance data

In simulations of scattering of two type-1 particles with
total energy close to the resonance energy my predicted by
form-factor perturbation theory, we observe that the prob-
ability of not being in the asymptotic 11 sector, denoted
P(—11,¢) and defined in Eq. (38), decays exponentially in
time after the collision. We also observe exponential temporal
decay of the excess energy AE(w,1t), as noted in the main
text.

Because the energy of the my resonance is below the
threshold m; 4+ m, for inelastic scattering into other asymp-
totic particle sectors, we expect the outgoing state to be
dominated by the 11 sector, and thus for any exponential
decay of P(— 11,¢) and AE(w,t) to be associated with the
resonance. If there is just one type of stable particle and
a single resonance, then the toy model of Appendix G1 is
applicable. For that model we found that the contribution to
the scattering amplitude arising from the pole decays in time
at a rate ['/2 at any point x in space. In Appendix G3 we
argued that, as a consequence, the portion P(— 11,¢) of the
outgoing state outside the asymptotic 11 sector, decays at rate
r.

If P(— 11,t) decays with rate I', and if the resonating
part of the wave function is spatially separated from the
off-resonant part—an assumption we also used in Appendix
G 3—then we should expect AE (w, t) to also decay with rate
I" insofar as the window of width w contains the resonating
excitation. Indeed, it should not matter if the window also
captures some particles in the 11-sector resulting from the
decay of the resonance; the probability of finding such par-
ticles in the window is roughly proportional to the probability
~e~ " that the resonance has not yet decayed. Therefore, we
can generously set w to include much of the scattering region
as long as it does not contain the off-resonant tracks.

a. Fitting Iy

We fit P(— 11, t) using the ansatz Eq. (39). We illustrate
these fits, and the necessity of the offset, in Fig. 19. We prefer
fitting P(— 11, ¢) to fitting AE(w, t) due to two phenomena
in our data that hinder fitting the latter: First, we observe tem-
poral oscillations in AE (w, t), most pronounced at smaller w,
particularly for larger 7. This is possibly due to interference
from small 12 and 21 contributions, since these contributions
would be near threshold so that outgoing particle velocities are
small, these contributions could linger in the window region
w for extended times. Second, we find a bias toward larger
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FIG. 18. Decay of P(— 11, t) and the excess energy expectation
values AE(w) for a subregion of spatial width w, centered at the
scattering location, for simulations at £ /m; & 2.746, near the m, res-
onance, at N ~ 0.7052 (g, = 1.06, g, = 0.00985), with ¢ = 80,
bond dimension D < 64 and time-step size 0.05. Relative position
on the y axis is not meaningful and probabilities are scaled for ease
of comparison with energies. We plot the excess energy for several
sizes of the subregion window over which we sum the energy con-
tributions. We observe fairly strong oscillations in the energy data,
which become smaller with larger window sizes. The light-colored
lines indicate fits, used to estimate I', from data between ¢t = 180
and t = 260.

100 ]

P(—11)

107

175 200 225 250 275 300 325
physical time

—— E=2.74,0=90,=0.0137 (Pjeak = 0.002)
E=2.77,0=90,I =0.0139 (Pjeak = 0.009)
—— E=2.81,0=90,=0.0138 (Pjeak = 0.025)
—— E=2.81,0=130,=0.0134 (Pjeax = 0.009)
—— E=2.84,0=90,I=0.014 (Pjeak = 0.066)
—— E=2.86,0=90,=0.0141 (Pjeak = 0.106)

FIG. 19. Decay of P(— 11, t) for n,, =~ 0.7052 (g, = 1.07, g, =
0.01315), for simulations at different energies. The correlation length
is £ ~ 4.88 and all of the simulations use initial wave-packet width
o = 90 except the red curve, which has 0 = 130. We see that there
is flattening at late times that is more pronounced at higher energies.
This indicates some scattering into additional sectors beyond 11. We
also see that increasing the wave-packet width reduces the flattening,
as we focus the energy more on the resonance and less on other
nearby channels. The resonance energy is my =~ 2.814. Each curve
is fitted (lines) to estimate I" and a constant probability offset Pie,.
For the red curve, the fitted data begins at + = 220, while for others
all data is used.

fitted decay rates for smaller w, with the rate approaching that
of P(— 11,¢) at large w. Both phenomena are illustrated in
Fig. 18.

We speculate that the bias at small w may be due to
contributions to AE (w, t) from portions of the resonating ex-
citation, or small 12 and 21 contributions, leaving the window
region. In this case, large w would guarantee that, except at
late times, we only capture decay into the 11 sector and no
inelastic scattering whose asymptotic states remain closer to
the center. One could then attempt to fit the energy density also
allowing for an offset as in Eq. (39). We did not do this be-
cause larger fixed-size windows start to pick up contributions
from the primary (off-resonant) tracks at early times. To get
good data to fit the resonance decay, this must be avoided by
allowing the primary tracks to leave the window, necessitating
longer simulation times. It may be possible to get good data
from time-dependent window sizes w(z), or by attempting
to extrapolate in w. We did not pursue this as both of these
procedures are more complicated than simply fitting P(— 11)
and introduce extra variables to the analysis.

To test robustness, we fit 'y at different energies, lattice
spacings, and with different settings for the maximum MPS
bond dimension Dy,,x and the integrator step size dfi,. We
show in Figs. 20(a) and 20(b) that our results are robust in
these parameters for selected simulations at larger 75, Where
we observe the most spread in Fig. 11.

b. Estimating my

To estimate my, we first project the outgoing state on a
timeslice onto the 11 position basis formed by the double-
excitation states defined in Eq. (19). This results in a
two-particle wave function, an example of which is shown
in Fig. 22, excluding any resonating component of the state,
as well as any components that have leaked via inelastic
channels. What remains is the off-resonance 11 component,
visible as a “blob” near the edge of the system, and the 11
decay products from the on-resonance component, visible as
a “tail” leading toward the scattering center. These features
correspond, respectively, to the primary and secondary tracks
visible in the energy expectation-value plots such as Fig. 10.
We do not account for momentum-dependence of the excita-
tion tensors in the projection used for this analysis — we find
the corrections obtained from doing this are very small.

Because the resonance is narrowly focused in momentum
space, the energy of the tail part of the 11 wave function will
be focused close to the resonance energy ma, even when the
total scattering energy deviates significantly. The resonance
acts as an energy filter on the incoming state that spatially
separates the components of the state close to the resonance
energy from the remainder. This is convenient because we
can then hope to cleanly extract the resonance energy from
a Fourier analysis of the spatial tail, whose dominant spatial
frequency should be given by the momentum of type-1 parti-
cles at energy my.

To extract this frequency, we consider a one-dimensional
“linescan” through the two-particle position-basis wave func-
tion, defined by setting the left and right particle positions
to be an equal distance from the scattering center. Such a
linescan captures the “blob” and “tail” features, as illustrated
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FIG. 20. (a) Decay of P(— 11,¢) and the excess energy expectation values AE(w = 400) with a 400-site window, for the same lattice
parameters shown in Fig. 18, but with two different maximum bond dimensions D < 64, 80 and integration step sizes 0.05, 0.04. We see some
small deviations for late times in the energy, but the results are generally robust. Each estimated I' is from a fit using data with ¢ € [180, 260].
(b) Decay of P(— 11,¢) and the excess energy expectation values AE(w = 400) with a 400-site window, with bond dimension D < 64
and time-step size 0.05, at two different lattice spacings, shown here via the correlation length ¢, in lattice sites. The lattice parameters are
g = 1.06, g, = 0.00985, 0 = 80 (£ =5.67, 0/2¢ ~ 7.05) and g, = 1.055, g, = 0.008368, 0 =90 (£ = 6.17, 0 /2¢ ~ 7.29), with energies
E/m; =~ 2.746 and E /m, ~ 2.758, respectively. In both cases n,, ~ 0.7052. Each estimated I" is from a fit using data with r € [180, 250].
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FIG. 21. Fast-Fourier transform (FFT) of a linescan through
the projected 11 position-basis wave function at chosen times af-
ter scattering near the my, resonance. We show the FFT of the
(Hamming-window modulated, zero-padded) full linescan as well as
the FFT of the “tail” feature (also windowed and padded). The peak
frequency of the “tail” FFT gives us our m, estimate and is indicated
by a solid black vertical line. It is different than the form-factor
(FF) predicted my, indicated by a black dashed line. The parameters
are 1y, ~ 0.7052 (g, = 1.07, g, = 0.01315), E /m; ~ 2.81 with two
different wave-packet widths. The spatial data for plot (b) is shown
in the inset of Fig. 22.

in Fig. 22. We then apply an FFT to the amplitudes inside
a spatial subregion chosen within the tail feature, using a
Hamming window function to reduce ringing effects due to
the finite size of the subregion. This FFT of the tail feature
yields a function of momentum peaked at a value k,;, which
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FIG. 22. Wave function for nye ~ 0.7052 (g, =1.07,g. =
0.01315), E/m; ~ 2.81, near the m, resonance, at time #yys ~ 285
(i = 800), projected into the 11 particle lattice position basis. Here
we neglect momentum dependence of the basis excitation tensors
and fix them according to the initial wave-packet momenta. We
observe a “blob” near the edge of the spatial window followed by a
resonance-decay “tail” extending to the middle, with an interference
gap in between. The inset shows a linescan, indicated by a white line
in the main plot, and shows how the linescan data may be modulated
via multiplication by a window function (here a Hamming function)
for FFT frequency analysis.

023266-24



REAL-TIME SCATTERING IN ISING FIELD THEORY ...

PHYSICAL REVIEW RESEARCH 7, 023266 (2025)

—_— Ae
-== scaled, x-shifted P(11, n)
< o« exp(—2bn)
E:, 1073 4 o exp(—rn)
&
o
o}
£ N\
%]
g
e
C
©
3 N
SN
DY
\
S
T T T = T
200 400 600 800 1000 1200

lattice position n

FIG. 23. Spatial behavior of the energy-density expectation
value Ae(n) = (k1)) — (BY™)y, and 11 position-basis probabil-
ity for the left particle P(11, n) on a timeslice at fppys & 285 (faq =
800). The probability data is scaled to match the energy density and
spatially shifted to account for the location of the position-basis exci-
tation being offset from the excitation tensor. Physical parameters are
May =~ 0.7052 (g, = 1.07, g, = 0.01315), E /m; =~ 2.81. The orange
line shows the spatial decay predicted by Eq. (G5), using the fitted
temporal decay (see Fig. 19) and m, estimated as in Fig. 21(b). For
comparison, we also show in gray the temporal decay at rate I". Here,
both I" and b are converted to lattice units.

is related to the mass of the resonance via

m= ,/4m% +kt2ail.

To understand Eq. (G22), consider the total wave func-
tion of the left- and right-moving particles after scattering
(ignoring overall factors which are irrelevant for the present
discussion),

(G22)

Yy~ / dpdq S(E)e™ T 0= iy

—i(E(pn+E(q)t—px—qy)

X e (G23)

where p and g are the momenta of the right- and left-moving
particle, respectively. We are interested in finding the dom-
inant frequency mode of the tail feature of a diagonal slice
¥ (x, —x, t) of this wave function (corresponding to the lines-
can in our numerical analysis) for a scattering process in the
vicinity of the resonance. Around the resonance, the S-matrix
takes the form (G1). As discussed in Sec. G 1, the contribution
relevant for the tail feature comes from the S-matrix pole
which is picked up when we deform one of the integration
contours to a saddle point. To evaluate the residue of this pole
it is useful to write the momenta as
— m? 2 k) — m? 2 5

p= T_ml+ p, q=-— T—ml-i- q,
such that for §p = 8g = 0 the center of mass energy sits ex-
actly at the resonance, E,, = m?. Expanding the denominator
of the S-matrix to linear order in 8 p and 8¢ gives

(G24)

S(E) ~ (G25)

8p—38qg—ib’

TABLE V. Parameters used for resonance data in Fig. 11. In all
cases, Dy, D = 64, dti, = 0.05.

8x 8z Matt a N E 14

1.0043 0.010000 0.050 75 1400 2.433 4.28
1.0043 0.010000 0.050 85 1400 2.433 4.28
1.0035 0.006800 0.050 85 1400 2.435 5.23
1.0100 0.012000 0.106 85 1400 2.464 3.99
1.0080 0.007900 0.106 75 1400 2.465 4.95
1.0070 0.006150 0.106 88 1400 2.448 5.66
1.0110 0.007450 0.150 80 1400 2.543 5.23
1.0110 0.007450 0.150 90 1400 2.543 5.23
1.0150 0.013000 0.152 85 1400 2.518 3.91
1.0250 0.013000 0.253 85 1400 2.565 4.09
1.0200 0.008555 0.253 90 1400 2.520 5.09
1.0500 0.020000 0.403 70 1400 2.664 3.51
1.0500 0.020000 0.403 90 1400 2.664 3.51
1.0400 0.013162 0.403 90 1400 2.689 4.36
1.0500 0.010000 0.583 90 1400 2.652 5.41
1.0500 0.010000 0.583 90 1400 2.685 541
1.0500 0.010000 0.583 80 1400 2.760 541
1.0500 0.010000 0.583 90 1400 2.760 5.41
1.0400 0.006580 0.583 90 1400 2.703 6.72
1.0700 0.013150 0.705 90 1400 2.771 4.89
1.0700 0.013150 0.705 90 1400 2.806 4.89
1.0700 0.013150 0.705 130 2000 2.806 4.89
1.0600 0.009850 0.705 80 1400 2.747 5.68
1.0550 0.008368 0.705 90 1400 2.758 6.18
1.0550 0.008368 0.705 120 1800 2.758 6.18
1.0500 0.007000 0.705 90 1400 2.732 6.78
1.0500 0.007000 0.705 120 1900 2.733 6.78
1.0500 0.007000 0.705 120 1900 2.810 6.78

with b defined in Eq. (G8). This is a good approximation at
least as long as 8p?, 8> <« m?, which is valid in our simula-
tions and demonstrates that the integrand has a pole at a purely
imaginary value of §p — 8¢ = ib. Integrating over one of the
momenta picks up the residue of this pole. The x-dependence
of the remaining momentum integral in ¥ (x, —x, t) thus re-

TABLE VI. Negligible dependence of P;;_,;; on the bond dimen-
sion D and the integrator time step dfy,, for two different 1, on either
side of the transition region and scattering energy E (in units of m).

D dllatt 8x 8z Matt E P] 1—>11
64 0.025 1.1 0.006 1.53 7 0.533
64 0.05 1.1 0.006 1.53 7 0.533
48 0.05 1.1 0.006 1.53 7 0.534
64 0.025 1.04 0.006 0.61 7 0.514
64 0.05 1.04 0.006 0.61 7 0.514
48 0.05 1.04 0.006 0.61 7 0.520
64 0.025 1.04 0.006 0.61 8 0.544
64 0.05 1.04 0.006 0.61 8 0.545
48 0.05 1.04 0.006 0.61 8 0.558
64 0.025 1.1 0.006 1.53 8 0.476
64 0.05 1.1 0.006 1.53 8 0.476
48 0.05 1.1 0.006 1.53 8 0.478
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TABLE VII. Dependence of the probability on number of sites
N and the packet width o for three different 1, at E = 6m,. For
E > 6m; we do not see any dependence even for this 1.

D dty 8x 8 Mate o N P
64  0.05 1.06 0.006 092 70 1000 0.257
64  0.05 1.06 0.006 092 100 1200 0.256

64 0.05 1.06532 0.006 1.0 70 1000 0.30
64  0.05 1.06532  0.006 1.0 100 1200 0.269
64  0.05 1.07054  0.006 1.08 70 1000 0.30
64 0.05 1.07054 0.006 1.08 100 1200 0.30
duces to

—i(px—gx —i(n/m?—4mi+8p—8q)x
e (px—q. )lpole =e ( 1 ToP Q).
i /m? 2
in/m*—4mix ebx’

which does not depend on momenta and thus can be factored
out of the integral. We thus see that if we scatter in the vicinity
of the resonance, i.e., if § pz, 8q2 <« m2, then the tail part
of the wave function oscillates in the x = —y direction with

momentum
_ 2
kit = \/m? — 4m7.

Therefore, Fourier transforming the diagonal wave function
¥ (x, —x, t) multiplied with a window function in x with sup-
port on the tail feature produces a function in momentum

space which is peaked at v/m* — 4m?. This can be verified
by Fourier transforming Eq. (G26) after multiplying it by a
Gaussian. Furthermore, the choice of the window function
does not affect the peak of the Fourier transform and we thus
use the more conventional Hamming window function instead
of a Gaussian. Once the dominant frequency kg is extracted
from the Fourier transform the resonance mass m is obtained
by inverting the relation (G27) which yields Eq. (G22).

In Fig. 21, we show the FFT results, plotted against energy,
for two different wave-packet widths. Note that, because we
preprocess the spatial data by applying window functions,
these are not equivalent to a momentum-basis projection of
the wave function. We plot the FFT of both the full linescan
and of the tail feature. We see that the peak frequency of the
tail (marked with a vertical line) matches a dip feature in the
full linescan, illustrating the destructive interference between
the on-resonance and off-resonance parts of the outgoing

| ole
P (G26)

(G27)

state. We also plot the form-factor prediction for my4, which
we see is significantly different than the observed my in this
case.

¢. Spatial decay

By examining the spatial wave function on a timeslice, we
can also test the relation, described in Eqgs. (G5) and (G9),
between spatial and temporal decay rates. Although these rela-
tions are derived from scattering of a wave packet with a plane
wave, we might expect them to be at least approximately valid
if we scatter very close to the resonance and let E, = E/2,
which is half the total simulation energy E. So, replacing
E, = E/2 in Eq. (G5), and using I' = 'y from our temporal
decay fits and m = my from Fourier analysis of the spatial
wave function, we get a prediction for the spatial decay rate
b. This must be converted into lattice units by dividing by the
correlation length €.

We see for an example simulation in Fig. 23 that the
predicted rate matches a section of the spatial wave func-
tion on a timeslice. Note that we do not use Eq. (G9) to
estimate my, preferring the Fourier-analysis method described
above, for two reasons: First, we find that the spatial decay is
quite difficult to fit accurately in our simulated data, requiring
long-running simulations to get a good fit range. Second, this
estimate would also depend on I" obtained from temporal fits,
adding further to the error.

APPENDIX H: HYPERPARAMETER DEPENDENCE
OF HIGH-ENERGY SCATTERING

In Fig. 12, the dependence of P, for different values
of scattering energy across wide range of 1, was shown. We
provide the numerical data for the dependence of parameters
on the probability data in Tables VI and VII where we find
almost no dependence on the parameters.

APPENDIX I: COMPUTATIONAL RESOURCES

The simulations were run on cba.4xlarge,
c6i.4xlarge, and c7i.4xlarge instances provided by
AWS, each with 8 physical cores (16 vCPUs, or hardware
threads) using the publicly available code evoMPS [27]. The
simulations with D = 64 and N = 2000 run at approximately
10000 RK4 time steps/week on cba.4xlarge instances.
Some numerical computations were also done on Symmetry
which is an HPC system hosted by Perimeter Institute.
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